Enfoqué Híbrido para la Clasificación de Muestras Histológicas para la Detección de Tumores Cerebrales: Descomposición lineal y Redes Neuronales
Contenido principal del artículo
Resumen
Hyperspectral imaging has demonstrated its potential to provide information of the chemical composition of tissue and also of its morphological characteristics. However, discerning the presence of a pathology through this information is not a simple task. Because of this, a hybrid methodology is proposed in this work, which combines the identification of characteristic components present in a hyperspectral image from linear unmixing methods, and the ability to distinguish patterns from a neural network. The results of this research show that the proposed method can distinguish a tumor condition from histological brain samples with an average accuracy of 86%. The study demonstrates the potential of hybrid classification methodologies in the analysis of spectral information for the identification of histological samples affected by tumor tissue.
Detalles del artículo
DERECHOS DE AUTOR Y DERECHOS CONEXOS, las MEMORIAS CONGRESO NACIONAL DE INGENÍERIA BIOMÉDICA es una publicación editada por la Sociedad Mexicana de Ingeniería Biomédica A.C., Plaza Buenavista, núm. 2, Col. Buenavista, Delegación Cuauhtémoc, C.P. 06350, México, D.F., Tel. +52 (555) 574-4505, www.somib.org.mx, correo-e: secretariado@somib.org.mx. Editor responsable: Elliot Vernet Saavedra. Reserva de Derechos al Uso Exclusivo No. 04-2015-011313082200-01, ISSN: 2395-8928, ambos otorgados por el Instituto Nacional de Derechos de Autor.