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Abstract—This paper describes the application of differential
neural networks (DNN) to classify the inverse response of the
optical nerve in an aviar model. Generally speaking, the main
objective in signal classification is to obtain the class of an
obtained response given a characteristic stimulus. This work deals
with the inverse procedure, that is, to recover the stimulus with
the measure of the optical nerve response after a classification.
A robust exact differentiator (RED) based on the super-twisting
algorithm (STA), that is a second order sliding mode technique,
reinforces the DNN classifier. The main idea is to combine the
DNN and RED approaches to implement a so-called nonlinear
observer for unknown inputs. The results show how the input
stimulus in the eye of an aviar model are reproduced with the
DNN-STA scheme based on a previous classification obtained
measuring the response in the optical nerve with the unknown
stimulus.

Index Terms—Signal classification, optical nerve, differential
neural network

I. INTRODUCTION

NOWDAYS, neural networks (NN) based pattern recog-

nition solutions have been frequently applied to classify

biological signals, especially in the domain of function ap-

proximation [1], pattern recognition [2], automated medical

diagnostic systems [3] and some others. The success of NN in

pattern recognition is a consequence of their capability to ap-

proximate nonlinear relationships between the input and output

pairs [4]. Therefore, the method selected to adjust the weights

in the NN structure plays a key role on forcing a higher

efficiency on the classification task. In [5], a DNN solved

the EEG signal pattern recognition problem. A class of DNN

[6] represented the relationship between the EEG signal and

its particular pattern class given by a sigmoid type function.

The DNN structure preserved the highly parallel structure that

characterizes many of the usual pattern recognition forms. By

virtue of its parallel distribution and feedback properties, the

DNN is tolerant to the presence of faults and external noises,

and it is able to generalize the input-output relationships in the

approximation problems. The main problem solved by DNN

signal classification was to identify the class of the EEG signal.

This paper deals with the opposite task solved for many

signal classifiers. Once the class is known, how to identify the

stimulus input that produce such class. In this manuscript, the
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so-called unknown input observers [7] solve the main problem.

The proposed methodology employs the super-twisting sliding

mode differentiator [8]. The following section describes the

complete methodology to reconstruct the input stimulus in an

aviar model optical nerve.

II. STIMATION OF UNKNOWN INPUT STIMULUS BY DNN

AND SUPER-TWISTING ALGORITHM ALGORITHMS

Fig. 1 describes the main result applying the DNN approach

as an identifier and the Super-Twisting Algorithm (STA) as a

differentiator to obtain the estimation of the unknown input

stimulus taken in the optical nerve of an aviar model. The

uncertain system provides the output information in a parallel

way to the DNN identifier (the adaptation law) and to the

RED based on the STA. The STA estimates the first order

derivative of each component of the available output in finite-

time. Then, the DNN identifier supplies the information of the

states and the parametric reconstruction of the state vector.

These two outputs (DNN identifier and STA differentiator)

are subtracted in order to estimate the unknown input. In

the estimation process, a first stage implies a DNN identifier

trained with prior information. The main difference in the

second stage is the information used to train the DNN. The

first stage uses the measurement input to perform the training.

Then, the weights obtained in this stage are submitted in the

second stage. The second DNN, (as Fig. 1 describes) does not

use the input information in the training process, that is, the

term W2φ(x)u does not appear in the DNN’s training. By this

reason, the approximation obtained by the second DNN has

a degree of inaccuracy. The STA provides robustness against

parametric uncertainties and finite-time convergence (classical

sliding mode advantages) and makes an exact estimation of

the derivative of the class to which the external stimulus be-

longs. These differences between the two estimating methods

together with the weights W Id, obtained in the off-line training

are the tools to obtain the estimation of the input stimulus.

A. DNN identification

The classification method described in [5] employs a DNN

to classify EEG signals and it is used in this paper. We refer the

reader to Fig. 1 in the aforementioned paper to get used to the

method employed to classify the signals in the optical nerve
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Figure 1. Complete procedure to obtain the estimation of unknown input stimulus u

of the aviar model. A sigmoid function represents a particular

class of signal with an appropriate external stimulus, that is,

xl(v) =
al

1 + e−cv
(1)

where the variable xl represents the target class and the

variables l, a and c are constant parameters to characterize

each class. By assumption, the next DNN represents the

dynamics of function xl in time

ẋ = Ax+W ∗

1 σ +W ∗

2 φu+ f(x, u) (2)

Where W ∗
1 and W ∗

1 represent the relationship between the

optical nerve and the external stimulus u, and f(x, u) is the

error associated to the finite number of activation functions

σ and φ. These activation functions are selected as sigmoid

functions [9]. The next equation describes the dynamics of the

DNN identifier

˙̂x = Ax̂+W Id
1 σ +W Id

2 φu (3)

where the free parameters W Id
1 and W Id

2 are updated by the

following differential equations

Ẇ Id
1 = −k1Pσ(x̂)∆⊤, W Id

1 (0) = W Id
1,0

Ẇ Id
2 = −k2P∆u⊤φ(x̂), W Id

2 (0) = W Id
2,0

(4)

in the last equation W Id
1 (0),W Id

2 (0) are the known initial

conditions of the weights. The term k is the learning coefficient

of the DNN identifier and P is the solution of the following

Riccati equation

PA+A⊤P + PRP +Q = 0
R = W̄ ∈ R

n×n, Q = Q0 + LσΛσ

Q0 = Q⊤
0 > 0 Λσ = Λ⊤

σ > 0
(5)

Remark 1. [6] The set of training algorithms presented in

equation (8) are the result of the application of the Lyapunov

based stability analysis with the following Lyapunov candidate

function

V = ∆⊤P∆+ k1tr
[

(W Id
1 )⊤W Id

1

]

+ k2tr
[

(W Id
2 )⊤W Id

2

]

(6)

Where tr(·) is the trace operator of a given matrix.

B. DNN-STA estimation of input stimulus

1) DNN on-line identifier: Following the development pro-

posed in [6], we define the DNN identifier as

˙̂x = Ãx̂+Wσ̃(x̂) (7)

supplied with a special updating (learning) law Ẇ =
Φ(W, x̂|W ∗). Notice that this DNN identifier has the same

structure as the one in equation (2) but without the term

regarding the input stimulus.

2) Learning law for the identifier: Let the identification

error be defined by ∆ = x − x̂, then, the adaptive learning

law Φ(W, x̂|W ∗) for the free parameters W is given by

Ẇ = −kP̃ σ̃(x̂)∆⊤

W (0) = W0, W0 ∈ R
n×n (8)

in the last equation W0 is the initial condition of the weights

and it is known. The term k is the learning coefficient of the

DNN identifier and P̃ is the solution of the following Riccati

equation
P̃ Ã+ Ã⊤P̃ + P̃RP̃ + Q̃ = 0

R = W̄

Q̃ = Q̃0 + Lσ̃Λσ̃

Q̃0 = Q̃⊤
0 > 0 Λσ̃ = Λ⊤

σ̃ > 0

(9)

3) Super-twisting sliding mode differentiator: The relative

degree (for the definition of the relative degree, we refer the

reader to [10], [11]) of the system (2) with respect to the

unknown input φ, in the case of the identification problem, is

equal to one. In order to recover the value of ˙̂x, the output

signal y = x must be differentiated once. For the case of

the identification problem, the STA is applied as a robust

exact differentiator (RED) [8] for each element of the output.

In particular, the STA application is based on the following

description. Define for the first element of the state vector

x as x1 = r, if w1 = r where r ∈ R is the signal to be

differentiated, w2 = ṙ represents its derivative and under the

assumption of |r̈| ≤ r+, the following auxiliary equation is

gotten
ẇ1 = w2

ẇ2 = r̈
(10)
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The previous differential equation is a state representation of

the signal r. The STA algorithm to obtain the derivative of r

looks like

˙̄w1 = w̄2 − λ1 |∆w|
1/2 sign (∆w)

˙̄w2 = −λ2sign (∆w)
∆w = w̄1 − w1

d = w̄2

(11)

where λ1, λ2 > 0 are the STA gains. Here d is the output of

the differentiator [8]. In equation (11),

sign(z) :=







1 if z > 0
[−1, 1] if z = 0
−1 if z < 0

(12)

This procedure must be applied for each element of the state

vector x in the sigmoid function x(v). Define the vector D

with the elements obtained by the parallel application of the

STA to each component of the state vector x, that is, the state

vector can be written as x = [x1, · · · , xn]
⊤

and di ∼= ẋi by

means of the STA, then,

D = [d1, · · · , dn]
⊤

(13)

Theorem 1. Consider the nonlinear system defined in equa-

tion (1), the DNN identifier defined in (7) and apply the sliding

mode differentiator (11) to each output component of the state

vector x, then, the identification error converges to a bounded

region around the origin defined as

ǫx̃ = φ+ + f̃+ (14)

and the unknown bounded perturbation can be obtained as

φ̂ = D −Ax̂ −W (t)σ(x̂) (15)

where D(t) is defined in (13) Then, the perturbation estimation

error is ultimately bounded around the origin as

ǫφ̃ = f̃+ (16)

With f̃+ ∈ R
+ being the bound of the modelling error

provided by the DNN. and φ+ ∈ R
+ is the maximum value

that the unknown stimulus can take along the time.

Proof. A similar Lyapunov stability analysis to the one pre-

sented in [6] and [12] can be followed to reach the result.

III. NUMERICAL RESULTS

A. DNN-STA approximation

Fig. 2 depicts the experimental setup that describes the

position of the input and output electrodes. All experiments

followed the rules stated in the official norm NOM-062-

ZOO-1999. Also the protocol proposed to execute the

animal experiments were evaluated and approved by the

ethical committee. The real images of the experimental

setup are omitted in order to avoid a harmful impression to

the reader. The off-line training makes a signal classification

into a classes that depends of input stimulus. Fig. 3 shows the

identification of the class produced by the aviar model’s optical

nerve response by means of the DNN and the STA. Both

algorithms reproduce the class of the nerve response. However,

Figure 2. Experimental setup. Section A describes the position of each
electrode inserted in the eye of an aviar model (A.1-A.3). Subsection (A.4)
describes the position of the electrode inserted in the optical nerve. Section
B describes the training in the DNN with the input stimulus (B.1-B.3). The
DNN (B.4) made a signal clasiffication, the output is the class where the
output stimulus (B.5) in the optical nerve belongs.
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Figure 3. Off-line results provided by the DNN to classify the input stimulus
in the aviar model’s optical nerve

in order to see the differences between each algorithm, fig.

3 includes a closer view that shows a better approximation

obtained with the STA. This difference is the key to reach the

objective of the proposed method. The difference in the DNN

approximation is a consequence of not use the input to train

on-line the DNN. Then, the input stimulus in the optical nerve

is reconstructed by means of these difference and the exact

estimation that the STA provides. Fig. 5 depicts the evolution

in time of DNN’s weights. The DNN took less than 10 seconds

to estimate the input stimulus.

Fig. 5 shows the on-line stimulus estimation by means of

the DNN-STA algorithm and the Euler approximation imple-

mented to recover the signal derivative. The Euler approxima-

tion exhibited a constant off-set in the estimation while the

DNN-STA estimation obtained a better approximation. The
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results include a number of 10 different group of signals

tested with the DNN-STA and using the Euler derivative

approximation. The performance index chosen to compare

them was the Euclidean norm. Fig. 6 shows this comparison.

The Euclidean norm of DNN-STA approach remains below

than the Euler approximation. The Euclidean norm of the

DNN-Euler approach is twice bigger than the DNN-STA

approximation.
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Figure 4. Estimation of unknown input stimulus u. The red line is the real
input stimulus applied in the optical nerve. The black line is the input estima-
tion obtained by the DNN-STA and the blue line is the input reconstruction
provided by the DNN but with an Euler derivative approximation
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Figure 5. Behavior of the weights in the DNN. The weights in the DNN give
the nonlinear relationship between the input and the output class in the signal
classifier

B. Discussion

This new DNN approach to identify input stimulus (in this

work applied into the optical nerve in the eye of an aviar

model) seems suitable to estimate other kind of electrophisiol-

ogycal signals. In this first result, given a class (obtained with a

previous classification) the DNN recovered the input stimulus.

Recover the input stimulus with the measure of the electrophi-

siologycal signal seems to be the next step. The applicability

of these results are quite important in orthosis and prosthesis

devices, where sometimes, the electromyographic signal is

the only available measurement, and the stimulus, that can

be traduced in the orthosis/prosthesis movement is unknown.
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Figure 6. Comparison in the performance of the DNN input estimation with
the STA and Euler differentiation techniques

With the optical signals presented in this manuscript, the idea

is to recover an approximation of the image that the patient is

observing just with a measure of the response in the optical

nerve.

IV. CONCLUSION

This study constitutes a new application of the so-called

unknown input observers in biomedical engineering, where

the stimulus that produces a response is needed to identify.

The main contribution is the the reproduction of the inverse

function of a DNN applying the STA as a RED. This inverse

function is equivalent to identify the stimulus injected to

the optical nerve in the testing example in this manuscript.

Comparing with the classical Euler approximation to obtain

the derivative of the input stimulus, the results applying the

STA presented better approximation capabilities.
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