
MEMORIAS DEL CONGRESO NACIONAL DE INGENIERÍA BIOMÉDICA 2014 | 172ÍNDICE

C
O

N
C

U
R

S
O

 E
ST

U
D

IA
N

T
IL

A
N

 IM
PR

O
V

ED
 C

O
N

S
EN

S
U

S
 A

LG
O

R
IT

H
M

 F
O

R
 A

PP
RO

X
IM

AT
E

ST
R

IN
G

 M
AT

C
H

IN
G

 

Abstract— One of the fundamental tasks in bioinformatics
consists in searching for patterns, in a protein or DNA sequence,
that are sufficiently similar to a given motif. This problem is
known as approximate string matching (ASM) and has several
applications besides bioinformatics. The similarity between
strings of symbols is typically evaluated by metrics such as the
Hamming distance, the Levensthein distance, or correlation or
consensus techniques. In this paper, a refinement of a recently
introduced consensus algorithm is proposed and evaluated with
real protein sequences from plants. Preliminary tests with real
protein sequences from plants show that the proposed
refinement can significantly increase the localization accuracy
by up to 95%, while further reducing the number of false
positives by around 80%. Thus, the proposed algorithm could be
a useful tool in many biological applications.

I. INTRODUCTION

Approximate string matching (ASM) is one of the
fundamental tasks in bioinformatics. Given a finite alphabet 𝐴𝐴𝐴𝐴,
a pattern string 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑚𝑚𝑚𝑚 and a search
string 𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏1𝑏𝑏𝑏𝑏2. . . 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑛𝑛𝑛𝑛 (also called the search
text), where * represents the Kleene star operation, the problem
consists in finding all the substrings in 𝑏𝑏𝑏𝑏 which are sufficiently
similar to 𝑎𝑎𝑎𝑎. This requires defining a similarity measure
between strings. The most popular measures are the Hamming
distance [1], which is equal to the number of mismatching
symbols between two strings of equal length, or infinite if the
strings have different lengths, and the Levensthein distance [2]
(also called edit distance), which is equal to the number of edit
operations (insertions, deletions, and substitutions of symbols)
that must be performed in order to transform one of the strings
into the other, where the strings may have different lengths.
Other similarity measures are based on correlation methods
[3], although these may not have a direct interpretation in
terms of editing operations such as symbol insertions or
substitutions. Given a similarity measure 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦), where 𝑥𝑥𝑥𝑥 and
𝑦𝑦𝑦𝑦 are two strings, and a similarity threshold 𝑘𝑘𝑘𝑘, the ASM
problem can be formally defined as follows: find all the indices
𝑟𝑟𝑟𝑟 such that 𝑑𝑑𝑑𝑑(𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+1. . . 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+𝑠𝑠𝑠𝑠−1) ≤ 𝑘𝑘𝑘𝑘 for some
non-negative integer 𝑠𝑠𝑠𝑠 that depends on 𝑟𝑟𝑟𝑟. Ideally, each value
of 𝑟𝑟𝑟𝑟 should correspond to the first symbol of an approximate
instance of the pattern string. However, solving this problem
often results in a large number of false positives, often due to
the fact that multiple consecutive indices may correspond to
the same instance of the pattern string. For example, under the
Levensthein measure, if a match is detected at position 𝑟𝑟𝑟𝑟 in the
search string with an edit distance 𝑑𝑑𝑑𝑑 < 𝑘𝑘𝑘𝑘, then a match will
also be reported at positions 𝑟𝑟𝑟𝑟 − 1 and 𝑟𝑟𝑟𝑟 + 1 (at least) with
edit distance 𝑑𝑑𝑑𝑑 + 1 ≤ 𝑘𝑘𝑘𝑘. Depending on the size of the

Research supported by CONACyT grant CB-2010-154623.
All authors are with the Facultad de Ciencias, Universidad Autonoma de

San Luis Potosi.

alphabet, the length of the pattern string, and the similarity
threshold, a typical search within a large DNA database may
return between tens of thousands to several millions of false
positives [4]. For this reason, a filtering stage is often
performed to discard any matches that either correspond to an
already reported instance, or are irrelevant for the application.

Recently, a new ASM algorithm was proposed, which uses
a consensus measure to assess the degree of similarity between
strings, and also applies a post-filtering stage to significantly
reduce the number of false positives with little computational
cost [5,6]. The algorithm, however, has an important
shortcoming: in practice, a reported index 𝑟𝑟𝑟𝑟 is often several
positions (up to 𝑘𝑘𝑘𝑘) apart from the true beginning of an instance.

In this paper, an improved version of the consensus
algorithm is presented, where a second filtering stage is
performed, based on the dynamic programming technique that
is used to compute the Levensthein distance. The proposed
method significantly improves the localization of the true
beginning of each instance, while further reducing the number
of false positives.

The article is organized as follows: in Section II, the basic
consensus algorithm, as introduced in [6], is briefly described,
along with the original post-filtering stage. Section III will
describe the proposed refinements. In Section IV, some
preliminary results using real protein sequences will be
presented and discussed. Finally, Section V will summarize
our conclusions.

II. BASIC CONSENSUS ALGORITHM

A. Baeza-Yates and Perleberg algorithm
The consensus method proposed in [6] is based on a

modification of an algorithm introduced by Baeza-Yates and
Perleberg to efficiently estimate the Hamming distance [7]. In
this first stage of this algorithm, one computes, for each
symbol 𝑠𝑠𝑠𝑠 ∈ 𝐴𝐴𝐴𝐴, the set 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) of zero-based positions where 𝑠𝑠𝑠𝑠
appears in the pattern string; that is, 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) = {𝑗𝑗𝑗𝑗 ∶ 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗+1 =
𝑠𝑠𝑠𝑠, 0 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑚𝑚𝑚𝑚 − 1}. Note that 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) is empty if 𝑠𝑠𝑠𝑠 does not
belong in the pattern string. In the second stage of the
algorithm, the search string is traversed, and for each symbol
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 one increases a counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗−𝑞𝑞𝑞𝑞 for all 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗).
The rationale behind this algorithm is that if a symbol 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 in the
search string appears in the pattern string, then an instance of
the pattern string might begin at positions 𝑗𝑗𝑗𝑗 − 𝑞𝑞𝑞𝑞, 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗) in
the search string. After the search string is traversed, the
counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 indicate the number of matching

Corresponding author: A. Alba, Facultad de Ciencias, UASLP, Av.
Salvador Nava Mtz. S/N, Zona Universitaria, San Luis Potosi, SLP, 78290,
Mexico. Phone: +52 (444) 8262486 x 2906. E-mail: fac@fc.uaslp.mx

An improved consensus algorithm for approximate string matching
Miguel E. Rubio-Rincon, Alfonso Alba, Edgar R. Arce-Santana, and Martin O. Mendez-Garcia.

dx.doi.org/10.24254/CNIB.14.31

MEMORIAS DEL CONGRESO NACIONAL DE INGENIERÍA BIOMÉDICA 2014 | 173ÍNDICE

C
O

N
C

U
R

S
O

 E
ST

U
D

IA
N

T
IL

A
N

 IM
PR

O
V

ED
 C

O
N

S
EN

S
U

S
 A

LG
O

R
IT

H
M

 F
O

R
 A

PP
RO

X
IM

AT
E

ST
R

IN
G

 M
AT

C
H

IN
G

 

Abstract— One of the fundamental tasks in bioinformatics
consists in searching for patterns, in a protein or DNA sequence,
that are sufficiently similar to a given motif. This problem is
known as approximate string matching (ASM) and has several
applications besides bioinformatics. The similarity between
strings of symbols is typically evaluated by metrics such as the
Hamming distance, the Levensthein distance, or correlation or
consensus techniques. In this paper, a refinement of a recently
introduced consensus algorithm is proposed and evaluated with
real protein sequences from plants. Preliminary tests with real
protein sequences from plants show that the proposed
refinement can significantly increase the localization accuracy
by up to 95%, while further reducing the number of false
positives by around 80%. Thus, the proposed algorithm could be
a useful tool in many biological applications.

I. INTRODUCTION

Approximate string matching (ASM) is one of the
fundamental tasks in bioinformatics. Given a finite alphabet 𝐴𝐴𝐴𝐴,
a pattern string 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑚𝑚𝑚𝑚 and a search
string 𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏1𝑏𝑏𝑏𝑏2. . . 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑛𝑛𝑛𝑛 (also called the search
text), where * represents the Kleene star operation, the problem
consists in finding all the substrings in 𝑏𝑏𝑏𝑏 which are sufficiently
similar to 𝑎𝑎𝑎𝑎. This requires defining a similarity measure
between strings. The most popular measures are the Hamming
distance [1], which is equal to the number of mismatching
symbols between two strings of equal length, or infinite if the
strings have different lengths, and the Levensthein distance [2]
(also called edit distance), which is equal to the number of edit
operations (insertions, deletions, and substitutions of symbols)
that must be performed in order to transform one of the strings
into the other, where the strings may have different lengths.
Other similarity measures are based on correlation methods
[3], although these may not have a direct interpretation in
terms of editing operations such as symbol insertions or
substitutions. Given a similarity measure 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦), where 𝑥𝑥𝑥𝑥 and
𝑦𝑦𝑦𝑦 are two strings, and a similarity threshold 𝑘𝑘𝑘𝑘, the ASM
problem can be formally defined as follows: find all the indices
𝑟𝑟𝑟𝑟 such that 𝑑𝑑𝑑𝑑(𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+1. . . 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+𝑠𝑠𝑠𝑠−1) ≤ 𝑘𝑘𝑘𝑘 for some
non-negative integer 𝑠𝑠𝑠𝑠 that depends on 𝑟𝑟𝑟𝑟. Ideally, each value
of 𝑟𝑟𝑟𝑟 should correspond to the first symbol of an approximate
instance of the pattern string. However, solving this problem
often results in a large number of false positives, often due to
the fact that multiple consecutive indices may correspond to
the same instance of the pattern string. For example, under the
Levensthein measure, if a match is detected at position 𝑟𝑟𝑟𝑟 in the
search string with an edit distance 𝑑𝑑𝑑𝑑 < 𝑘𝑘𝑘𝑘, then a match will
also be reported at positions 𝑟𝑟𝑟𝑟 − 1 and 𝑟𝑟𝑟𝑟 + 1 (at least) with
edit distance 𝑑𝑑𝑑𝑑 + 1 ≤ 𝑘𝑘𝑘𝑘. Depending on the size of the

Research supported by CONACyT grant CB-2010-154623.
All authors are with the Facultad de Ciencias, Universidad Autonoma de

San Luis Potosi.

alphabet, the length of the pattern string, and the similarity
threshold, a typical search within a large DNA database may
return between tens of thousands to several millions of false
positives [4]. For this reason, a filtering stage is often
performed to discard any matches that either correspond to an
already reported instance, or are irrelevant for the application.

Recently, a new ASM algorithm was proposed, which uses
a consensus measure to assess the degree of similarity between
strings, and also applies a post-filtering stage to significantly
reduce the number of false positives with little computational
cost [5,6]. The algorithm, however, has an important
shortcoming: in practice, a reported index 𝑟𝑟𝑟𝑟 is often several
positions (up to 𝑘𝑘𝑘𝑘) apart from the true beginning of an instance.

In this paper, an improved version of the consensus
algorithm is presented, where a second filtering stage is
performed, based on the dynamic programming technique that
is used to compute the Levensthein distance. The proposed
method significantly improves the localization of the true
beginning of each instance, while further reducing the number
of false positives.

The article is organized as follows: in Section II, the basic
consensus algorithm, as introduced in [6], is briefly described,
along with the original post-filtering stage. Section III will
describe the proposed refinements. In Section IV, some
preliminary results using real protein sequences will be
presented and discussed. Finally, Section V will summarize
our conclusions.

II. BASIC CONSENSUS ALGORITHM

A. Baeza-Yates and Perleberg algorithm
The consensus method proposed in [6] is based on a

modification of an algorithm introduced by Baeza-Yates and
Perleberg to efficiently estimate the Hamming distance [7]. In
this first stage of this algorithm, one computes, for each
symbol 𝑠𝑠𝑠𝑠 ∈ 𝐴𝐴𝐴𝐴, the set 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) of zero-based positions where 𝑠𝑠𝑠𝑠
appears in the pattern string; that is, 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) = {𝑗𝑗𝑗𝑗 ∶ 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗+1 =
𝑠𝑠𝑠𝑠, 0 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑚𝑚𝑚𝑚 − 1}. Note that 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) is empty if 𝑠𝑠𝑠𝑠 does not
belong in the pattern string. In the second stage of the
algorithm, the search string is traversed, and for each symbol
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 one increases a counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗−𝑞𝑞𝑞𝑞 for all 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗).
The rationale behind this algorithm is that if a symbol 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 in the
search string appears in the pattern string, then an instance of
the pattern string might begin at positions 𝑗𝑗𝑗𝑗 − 𝑞𝑞𝑞𝑞, 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗) in
the search string. After the search string is traversed, the
counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 indicate the number of matching

Corresponding author: A. Alba, Facultad de Ciencias, UASLP, Av.
Salvador Nava Mtz. S/N, Zona Universitaria, San Luis Potosi, SLP, 78290,
Mexico. Phone: +52 (444) 8262486 x 2906. E-mail: fac@fc.uaslp.mx

An improved consensus algorithm for approximate string matching
Miguel E. Rubio-Rincon, Alfonso Alba, Edgar R. Arce-Santana, and Martin O. Mendez-Garcia.

symbols between the pattern string and the substring
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗. . . 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗+𝑚𝑚𝑚𝑚−1. The Hamming distance between these strings can
simply be computed as 𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 .

B. Generalization to insertions and deletions of symbols
The Baeza-Yates and Perleberg algorithm, as described

above, can only detect symbol mismatches, but is unable to
take insertions and deletions of symbols into account. To
overcome this problem, a simple strategy is introduced in [5]
and [6]. Since any insertions or deletions might offset the
length of an instance of the pattern string by up to 𝑘𝑘𝑘𝑘 symbols
(where 𝑘𝑘𝑘𝑘 is the maximum edit distance allowed), the authors
suggest to increase the counters 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗−𝑞𝑞𝑞𝑞+𝑟𝑟𝑟𝑟 for each 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗) and
for all 𝑟𝑟𝑟𝑟 = −𝑘𝑘𝑘𝑘, . . . , 𝑘𝑘𝑘𝑘. We have found that a better strategy is
to simply replace the alpha-sets by an expanded set �̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠),
which can be obtained as

�̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) = {𝑞𝑞𝑞𝑞 + 𝑟𝑟𝑟𝑟 ∶ 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠), 𝑟𝑟𝑟𝑟 = −𝑘𝑘𝑘𝑘, . . . , 𝑘𝑘𝑘𝑘}.
The expanded set �̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) can then be used instead of the set

𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) in the Baeza-Yates and Perleberg algorithm described in
the previous subsection.

Note that, with this modification, the counters 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 are no
longer related to the Hamming distance nor they are related to
the Levensthein distance. Instead, these counters conform a
voting system (i.e., a consensus) related to the likelihood that
an approximate instance of the pattern string begins at a given
position in the search string. If the �̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) sets are used, the
counters take values between 0 and 𝑚𝑚𝑚𝑚. If a counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 exceeds
a given threshold 𝑈𝑈𝑈𝑈 (not necessarily related to 𝑘𝑘𝑘𝑘), the
algorithm reports position 𝑗𝑗𝑗𝑗 as a positive.

C. Reduction of false positives
As in many other ASM algorithms, the consensus

algorithm described in the previous sections may report a large
number of false positives. However, most of these are adjacent
positions, corresponding to the same instances of the pattern
string within the search string. In order to eliminate these false
positives, one can perform a post-processing stage where for
each sequence of consecutive positions reported as positives
𝑗𝑗𝑗𝑗, . . . , 𝑗𝑗𝑗𝑗 + 𝑟𝑟𝑟𝑟, such that 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, . . . , 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗+𝑟𝑟𝑟𝑟 ≥ 𝑈𝑈𝑈𝑈, one can choose the first
position 𝑝𝑝𝑝𝑝, 𝑗𝑗𝑗𝑗 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑗𝑗𝑗𝑗 + 𝑟𝑟𝑟𝑟 such that 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, . . . , 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗+𝑟𝑟𝑟𝑟, and
report 𝑝𝑝𝑝𝑝 as the only positive of the sequence. This filtering
stage may reduce the number of false positives by 80% to 90%
with very little computational cost.

III. PROPOSED REFINATIONS

One disadvantage of the consensus algorithm described in
the previous section is that the reported positives may have a
localization error of up to 𝑘𝑘𝑘𝑘 positions with respect to the true
beginning of the pattern instances. This is because the
maximum counter value in a group of consecutive positives
does not always correspond to the start of an instance. To
overcome this problem, one can compute the Levensthein
distance between the pattern string and the search substring
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝−𝑘𝑘𝑘𝑘. . . 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝+𝑚𝑚𝑚𝑚−1+𝑘𝑘𝑘𝑘, for each positive 𝑝𝑝𝑝𝑝 reported by the
consensus method. One way to do this is by means of the
classic dynamic programming algorithm originally adapted by
Sellers [8] for string matching. We specifically use the text-
searching version reported in [9]. In this algorithm, one

computes a matrix 𝐶𝐶𝐶𝐶 in column-wise or row-wise order using
the following recursive formula:

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = min(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗−1 + 𝛿𝛿𝛿𝛿(𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖, 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝−𝑘𝑘𝑘𝑘−1+𝑗𝑗𝑗𝑗),
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗 + 1, 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗−1 + 1),

where 𝑑𝑑𝑑𝑑(𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣) = 0 if 𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑣𝑣 and 1 otherwise. It is also
necessary to define 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,0 = 1 for all 𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶0,𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗.
Once this matrix has been computed, the bottom row contains
the Levensthein distance between the pattern string and the
text substring which ends at the corresponding column. For our
application, we are interested in the beginning of the pattern
instances, rather than the ending position; therefore, we apply
the dynamic programming algorithm to the inverted input
strings. Those values in the bottom row which result to be less
or equal than 𝑘𝑘𝑘𝑘 will correspond to matching positions;
however, at this point we already know that the text substring
corresponds to a single instance of the pattern, so one must
only choose one of the positions with distance lower or equal
than 𝑘𝑘𝑘𝑘. We have found that the floor of the average among the
matching positions yields a much better localization than the
original consensus method. Moreover, this refinement can
further reduce the number of false positives in two ways: (1)
when a false positive from the consensus method does not
correspond to an actual match, the dynamic programming
refinement will report no matches, and (2) when two or more
false positives from the consensus method correspond to the
same instance of the pattern, the proposed refinement will
likely report the same matching position for all of them,
effectively reducing multiple positives into a single one.

IV. PRELIMINARY RESULTS WITH REAL PROTEIN SEQUENCES

To evaluate the proposed refinements, we have tested a
C++ implementation of the proposed algorithm, as well as the
original consensus method, with six different protein
sequences from the following plants: Opuntia streptacantha,
Arabidopsis thaliana, and A. lyrata [10,11,12]. Dehydrin
proteins (DHN) are characterized by the presence of one or
more K-segments consisting of approximately 15 amino acid
residues [EKKGIM(E/D)KIKEKLPG], which form a putative
amphiphatic 𝛼𝛼𝛼𝛼-helix. DHN proteins may also contain S-
segments [LHRSGS4-10(E/D)3] formed by a stretch of 4-10
serine residues, and Y-segments [(V/T)D(E/Q)YGNP] that are
located near the N-terminus [12,13]. DHN proteins, in general,
share low sequence identities, so proper identification of
conserved motifs is important for the classification of these
proteins into the different DHN sub-types.

Each of the six protein sequences contains multiple
approximate instances of at least one of the patterns (K-
segment, S-segment or Y-segment), whose true locations (i.e.,
the position of the first symbol of each instance) were
manually annotated by an expert biologist, and thus are known
in advance. Among the six sequences, there are 4 S-segments,
17 K-segments, and 8 Y-segments, for a total of 29 instances.
In this preliminary evaluation, we apply both versions of the
consensus algorithm (with and without the refinement
proposed in Section III) and determine the following indices:

- True positives (TP), the number of reported matches
which correspond to a true instance

MEMORIAS DEL CONGRESO NACIONAL DE INGENIERÍA BIOMÉDICA 2014 | 174ÍNDICE

C
O

N
C

U
R

S
O

 E
ST

U
D

IA
N

T
IL

A
N

 IM
PR

O
V

ED
 C

O
N

S
EN

S
U

S
 A

LG
O

R
IT

H
M

 F
O

R
 A

PP
RO

X
IM

AT
E

ST
R

IN
G

 M
AT

C
H

IN
G

- False positives (FP), the number of reported matches
which do not correspond to a true instance

- False negatives (FN), the number of true instances
that do not correspond to any of the reported matches

- Localization error (LE), the average absolute
difference between a reported true positive, and the
position of the corresponding true instance.

- Computation time (CT), the total search time for all
the six protein sequences and all three patterns.

In all cases, the edit distance threshold 𝑘𝑘𝑘𝑘 was chosen to be
around 𝑚𝑚𝑚𝑚/3, where 𝑚𝑚𝑚𝑚 is the length of the pattern string;
specifically, 𝑘𝑘𝑘𝑘 = 2 for the S-segment, 𝑘𝑘𝑘𝑘 = 3 for the Y-
segment, and 𝑘𝑘𝑘𝑘 = 6 for the K-segment. Also, following [7],
the consensus threshold 𝑈𝑈𝑈𝑈 was chosen to be around 𝑈𝑈𝑈𝑈 =
(2/3)𝑚𝑚𝑚𝑚. Slight adjustments were made in order to achieve a
100% true positive rate, thus increasing the number of false
positives.

The resulting indices, for each version of the algorithm, are
reported in Table I. Moreover, Figure 1 shows the six protein
sequences and the positions that the proposed algorithm
(including the refinement stage) reported as positives. The
localization error (LE) is significantly lower for the refined
version of the consensus algorithm with respect to the basic
version. This is because the refined algorithm is able to find
the exact location on 22 of the 29 pattern instances, and finds
7 more instances with a localization error of only 1. On the
other hand, the basic algorithm yields a localization error of up
to 6 for some instances (of the K-segment, where 𝑘𝑘𝑘𝑘 = 6 is
used). Thus, in this experiment the proposed refinement
reduces the localization error by 80% to 95%. Note also that
the total number of false positives is 131 for the basic
consensus method, while using the proposed refinement
reports only 5 false positives; that is, a reduction of 95% of
false positives.

 Finally, we also measured the total computation time, for
the search of the three patterns within the six protein
sequences. Computation times with an Intel Core2Duo CPU
running at 2.4 GHz were 500 𝜇𝜇𝜇𝜇s for the basic algorithm, and
800 𝜇𝜇𝜇𝜇s for the refined version; therefore, in this test the
proposed refinement increases computation time by around
60%; however, this figure will depend on the number of
positives reported by the basic consensus algorithm.

V. CONCLUSIONS
A refinement for the consensus method for approximate

string matching, originally introduced in [5,6], was presented.
This refinement, which uses the classic dynamic
programming algorithm for computing the edit distance
between two strings, significantly reduces the localization
error and also reduces the number of false positives with an
acceptable computational cost. Further research will focus on
a more detailed evaluation, and a comparison with other state-
of-the-art methods.

REFERENCES
The authors would like to thank Margarita Rodriguez-

Kessler for providing the protein sequences used in this study
and for the fruitful discussions.

REFERENCES
[1] R. W. Hamming, “Error detecting and error correcting codes,” Bell

System Technical Journal, vol. 29, pp. 147-160, 1950.
[2] V. I. Levensthein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Soviet Physics Doklady, vol. 10, pp. 707-
710, 1966.

[3] A. Alba, M. Rodriguez-Kessler, E. R. Arce-Santana and M. O.
Mendez, “Approximate string matching using phase correlation,” in
Proc. 34th Annual Int. Conf. of the IEEE EMBS, pp. 6309-6312, 2012.

[4] J. Buhler, “Efficient large-scale sequence comparison by locality
sensitive hashing,” Bioinformatics, vol. 17, pp. 21-27, 2001.

[5] M. Rubio, A. Alba, M. Mendez, E. Arce-Santana, M. Rodriguez-
Kessler, “A Consensus Algorithm for Approximate String Matching,”
Procedia Technology, vol. 7, pp. 322-327, 2013.

[6] A. Alba, M. Rubio-Rincon, M. Rodriguez-Kessler, E. R. Arce-
Santana, M. O. Mendez, “Un algoritmo de consenso para la búsqueda
aproximada de patrones en cadenas de proteínas,” Revista Mexicana
de Ingeniería Biomédica, vol. 33, pp. 87-99, 2012.

[7] R. A. Baeza-Yates, C. H. Perleberg, “Fast and practical approximate
string matching,” Inf. Process. Lett., vol. 59, pp. 21-27, 1996.

[8] P. H. Sellers, “The theory and computation of evolutionary distances:
pattern recognition,” Journal of algorithms, vol. 1, pp. 359-373, 1980.

[9] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, pp-31-88, 2001.

[10] A. Ochoa-Alfaro, M. Rodriguez-Kessler, M. Perez-Morales, P.
Delgado-Sanchez, C. Cuevas-Velazquez, G. Gomez-Anduro, J.
Jimenez-Bremont, “Functional characterization of an acidic SK3
dehydrin isolated from an Opuntia streptacantha cDNA library,”
Planta, vol. 235, pp. 565-578, 2012.

[11] M. Hundertmark, D. K. Hincha, “LEA (late embryogenesis abundant)
proteins and their encoding genes in Arabidopsis thaliana,” BMC
Genomics, vol. 9, pp. 118, 2008.

[12] J. F. Jimenez-Bremont, I. Maruri-Lopez, A. Ochoa-Alfaro, P.
Delgado-Sanchez, J. Bravo, M. Rodriguez-Kessler, “LEA gene
introns: is the intron of dehydrin genes a characteristic of the serine-
segment?,” Plant Mol Biol Rep., vol. 31, pp., 128-140, 2013.

[13] C. R. Allagulova, F. R. Gimalov, F. M. Shakirova, V. A. Vakhitov,
“The plant dehydrins: structure and putative functions,” Biochemistry
(Moscow), vol. 68, pp. 945-951, 2003.

TABLE I. MATCHING RESULTS FOR SIX PROTEIN SEQUENCES USING
THE BASIC CONSENSUS ALGORITHM AND THE PROPOSED REFINEMENT

 S-segments K-segments Y-segments
 LHRSGS EKKGIMDKIKEKLPG DEYGNP
 𝑘𝑘𝑘𝑘 = 2, 𝑈𝑈𝑈𝑈 = 4 𝑘𝑘𝑘𝑘 = 6,𝑈𝑈𝑈𝑈 = 11 𝑘𝑘𝑘𝑘 = 3, 𝑈𝑈𝑈𝑈 = 4

 Basic Refined Basic Refined Basic Refined
TP 4 4 17 17 8 8
FP 30 0 29 2 72 3
FN 0 0 0 0 0 0
LE 2.25 0.50 4.05 0.17 3.00 0.25

MEMORIAS DEL CONGRESO NACIONAL DE INGENIERÍA BIOMÉDICA 2014 | 175ÍNDICE

C
O

N
C

U
R

S
O

 E
ST

U
D

IA
N

T
IL

A
N

 IM
PR

O
V

ED
 C

O
N

S
EN

S
U

S
 A

LG
O

R
IT

H
M

 F
O

R
 A

PP
RO

X
IM

AT
E

ST
R

IN
G

 M
AT

C
H

IN
G

- False positives (FP), the number of reported matches
which do not correspond to a true instance

- False negatives (FN), the number of true instances
that do not correspond to any of the reported matches

- Localization error (LE), the average absolute
difference between a reported true positive, and the
position of the corresponding true instance.

- Computation time (CT), the total search time for all
the six protein sequences and all three patterns.

In all cases, the edit distance threshold 𝑘𝑘𝑘𝑘 was chosen to be
around 𝑚𝑚𝑚𝑚/3, where 𝑚𝑚𝑚𝑚 is the length of the pattern string;
specifically, 𝑘𝑘𝑘𝑘 = 2 for the S-segment, 𝑘𝑘𝑘𝑘 = 3 for the Y-
segment, and 𝑘𝑘𝑘𝑘 = 6 for the K-segment. Also, following [7],
the consensus threshold 𝑈𝑈𝑈𝑈 was chosen to be around 𝑈𝑈𝑈𝑈 =
(2/3)𝑚𝑚𝑚𝑚. Slight adjustments were made in order to achieve a
100% true positive rate, thus increasing the number of false
positives.

The resulting indices, for each version of the algorithm, are
reported in Table I. Moreover, Figure 1 shows the six protein
sequences and the positions that the proposed algorithm
(including the refinement stage) reported as positives. The
localization error (LE) is significantly lower for the refined
version of the consensus algorithm with respect to the basic
version. This is because the refined algorithm is able to find
the exact location on 22 of the 29 pattern instances, and finds
7 more instances with a localization error of only 1. On the
other hand, the basic algorithm yields a localization error of up
to 6 for some instances (of the K-segment, where 𝑘𝑘𝑘𝑘 = 6 is
used). Thus, in this experiment the proposed refinement
reduces the localization error by 80% to 95%. Note also that
the total number of false positives is 131 for the basic
consensus method, while using the proposed refinement
reports only 5 false positives; that is, a reduction of 95% of
false positives.

 Finally, we also measured the total computation time, for
the search of the three patterns within the six protein
sequences. Computation times with an Intel Core2Duo CPU
running at 2.4 GHz were 500 𝜇𝜇𝜇𝜇s for the basic algorithm, and
800 𝜇𝜇𝜇𝜇s for the refined version; therefore, in this test the
proposed refinement increases computation time by around
60%; however, this figure will depend on the number of
positives reported by the basic consensus algorithm.

V. CONCLUSIONS
A refinement for the consensus method for approximate

string matching, originally introduced in [5,6], was presented.
This refinement, which uses the classic dynamic
programming algorithm for computing the edit distance
between two strings, significantly reduces the localization
error and also reduces the number of false positives with an
acceptable computational cost. Further research will focus on
a more detailed evaluation, and a comparison with other state-
of-the-art methods.

REFERENCES
The authors would like to thank Margarita Rodriguez-

Kessler for providing the protein sequences used in this study
and for the fruitful discussions.

REFERENCES
[1] R. W. Hamming, “Error detecting and error correcting codes,” Bell

System Technical Journal, vol. 29, pp. 147-160, 1950.
[2] V. I. Levensthein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Soviet Physics Doklady, vol. 10, pp. 707-
710, 1966.

[3] A. Alba, M. Rodriguez-Kessler, E. R. Arce-Santana and M. O.
Mendez, “Approximate string matching using phase correlation,” in
Proc. 34th Annual Int. Conf. of the IEEE EMBS, pp. 6309-6312, 2012.

[4] J. Buhler, “Efficient large-scale sequence comparison by locality
sensitive hashing,” Bioinformatics, vol. 17, pp. 21-27, 2001.

[5] M. Rubio, A. Alba, M. Mendez, E. Arce-Santana, M. Rodriguez-
Kessler, “A Consensus Algorithm for Approximate String Matching,”
Procedia Technology, vol. 7, pp. 322-327, 2013.

[6] A. Alba, M. Rubio-Rincon, M. Rodriguez-Kessler, E. R. Arce-
Santana, M. O. Mendez, “Un algoritmo de consenso para la búsqueda
aproximada de patrones en cadenas de proteínas,” Revista Mexicana
de Ingeniería Biomédica, vol. 33, pp. 87-99, 2012.

[7] R. A. Baeza-Yates, C. H. Perleberg, “Fast and practical approximate
string matching,” Inf. Process. Lett., vol. 59, pp. 21-27, 1996.

[8] P. H. Sellers, “The theory and computation of evolutionary distances:
pattern recognition,” Journal of algorithms, vol. 1, pp. 359-373, 1980.

[9] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, pp-31-88, 2001.

[10] A. Ochoa-Alfaro, M. Rodriguez-Kessler, M. Perez-Morales, P.
Delgado-Sanchez, C. Cuevas-Velazquez, G. Gomez-Anduro, J.
Jimenez-Bremont, “Functional characterization of an acidic SK3
dehydrin isolated from an Opuntia streptacantha cDNA library,”
Planta, vol. 235, pp. 565-578, 2012.

[11] M. Hundertmark, D. K. Hincha, “LEA (late embryogenesis abundant)
proteins and their encoding genes in Arabidopsis thaliana,” BMC
Genomics, vol. 9, pp. 118, 2008.

[12] J. F. Jimenez-Bremont, I. Maruri-Lopez, A. Ochoa-Alfaro, P.
Delgado-Sanchez, J. Bravo, M. Rodriguez-Kessler, “LEA gene
introns: is the intron of dehydrin genes a characteristic of the serine-
segment?,” Plant Mol Biol Rep., vol. 31, pp., 128-140, 2013.

[13] C. R. Allagulova, F. R. Gimalov, F. M. Shakirova, V. A. Vakhitov,
“The plant dehydrins: structure and putative functions,” Biochemistry
(Moscow), vol. 68, pp. 945-951, 2003.

TABLE I. MATCHING RESULTS FOR SIX PROTEIN SEQUENCES USING
THE BASIC CONSENSUS ALGORITHM AND THE PROPOSED REFINEMENT

 S-segments K-segments Y-segments
 LHRSGS EKKGIMDKIKEKLPG DEYGNP
 𝑘𝑘𝑘𝑘 = 2, 𝑈𝑈𝑈𝑈 = 4 𝑘𝑘𝑘𝑘 = 6,𝑈𝑈𝑈𝑈 = 11 𝑘𝑘𝑘𝑘 = 3, 𝑈𝑈𝑈𝑈 = 4

 Basic Refined Basic Refined Basic Refined
TP 4 4 17 17 8 8
FP 30 0 29 2 72 3
FN 0 0 0 0 0 0
LE 2.25 0.50 4.05 0.17 3.00 0.25

Figure 1. Results obtained for the six protein sequences. True instances of the pattern strings are represented using different colorings: S-segments are

shown in red, K-segments in blue, and Y-segments in green. The reported matches (only the first position) are shown as underlines for the basic consensus
method, and rectangular boxes for the refined algorithm proposed here.

