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Abstract— One of the fundamental tasks in bioinformatics 
consists in searching for patterns, in a protein or DNA sequence, 
that are sufficiently similar to a given motif. This problem is 
known as approximate string matching (ASM) and has several 
applications besides bioinformatics. The similarity between 
strings of symbols is typically evaluated by metrics such as the 
Hamming distance, the Levensthein distance, or correlation or 
consensus techniques. In this paper, a refinement of a recently 
introduced consensus algorithm is proposed and evaluated with 
real protein sequences from plants. Preliminary tests with real 
protein sequences from plants show that the proposed 
refinement can significantly increase the localization accuracy 
by up to 95%, while further reducing the number of false 
positives by around 80%. Thus, the proposed algorithm could be 
a useful tool in many biological applications. 
 

I. INTRODUCTION 

Approximate string matching (ASM) is one of the 
fundamental tasks in bioinformatics. Given a finite alphabet 𝐴𝐴𝐴𝐴, 
a pattern string 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑚𝑚𝑚𝑚 and a search 
string 𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏1𝑏𝑏𝑏𝑏2. . . 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑛𝑛𝑛𝑛 (also called the search 
text), where * represents the Kleene star operation, the problem 
consists in finding all the substrings in 𝑏𝑏𝑏𝑏 which are sufficiently 
similar to 𝑎𝑎𝑎𝑎. This requires defining a similarity measure 
between strings. The most popular measures are the Hamming 
distance [1], which is equal to the number of mismatching 
symbols between two strings of equal length, or infinite if the 
strings have different lengths, and the Levensthein distance [2] 
(also called edit distance), which is equal to the number of edit 
operations (insertions, deletions, and substitutions of symbols) 
that must be performed in order to transform one of the strings 
into the other, where the strings may have different lengths. 
Other similarity measures are based on correlation methods 
[3], although these may not have a direct interpretation in 
terms of editing operations such as symbol insertions or 
substitutions. Given a similarity measure 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦), where 𝑥𝑥𝑥𝑥 and 
𝑦𝑦𝑦𝑦 are two strings, and a similarity threshold 𝑘𝑘𝑘𝑘, the ASM 
problem can be formally defined as follows: find all the indices 
𝑟𝑟𝑟𝑟 such that 𝑑𝑑𝑑𝑑(𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+1. . . 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+𝑠𝑠𝑠𝑠−1) ≤ 𝑘𝑘𝑘𝑘 for some 
non-negative integer 𝑠𝑠𝑠𝑠 that depends on 𝑟𝑟𝑟𝑟. Ideally, each value 
of 𝑟𝑟𝑟𝑟 should correspond to the first symbol of an approximate 
instance of the pattern string. However, solving this problem 
often results in a large number of false positives, often due to 
the fact that multiple consecutive indices may correspond to 
the same instance of the pattern string. For example, under the 
Levensthein measure, if a match is detected at position 𝑟𝑟𝑟𝑟 in the 
search string with an edit distance 𝑑𝑑𝑑𝑑 < 𝑘𝑘𝑘𝑘, then a match will 
also be reported at positions 𝑟𝑟𝑟𝑟 − 1 and 𝑟𝑟𝑟𝑟 + 1 (at least) with 
edit distance 𝑑𝑑𝑑𝑑 + 1 ≤ 𝑘𝑘𝑘𝑘. Depending on the size of the 
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alphabet, the length of the pattern string, and the similarity 
threshold, a typical search within a large DNA database may 
return between tens of thousands to several millions of false 
positives [4]. For this reason, a filtering stage is often 
performed to discard any matches that either correspond to an 
already reported instance, or are irrelevant for the application. 

Recently, a new ASM algorithm was proposed, which uses 
a consensus measure to assess the degree of similarity between 
strings, and also applies a post-filtering stage to significantly 
reduce the number of false positives with little computational 
cost [5,6]. The algorithm, however, has an important 
shortcoming: in practice, a reported index 𝑟𝑟𝑟𝑟 is often several 
positions (up to 𝑘𝑘𝑘𝑘) apart from the true beginning of an instance. 

In this paper, an improved version of the consensus 
algorithm is presented, where a second filtering stage is 
performed, based on the dynamic programming technique that 
is used to compute the Levensthein distance. The proposed 
method significantly improves the localization of the true 
beginning of each instance, while further reducing the number 
of false positives. 

The article is organized as follows: in Section II, the basic 
consensus algorithm, as introduced in [6], is briefly described, 
along with the original post-filtering stage. Section III will 
describe the proposed refinements. In Section IV, some 
preliminary results using real protein sequences will be 
presented and discussed. Finally, Section V will summarize 
our conclusions.  

 

II. BASIC CONSENSUS ALGORITHM 

A. Baeza-Yates and Perleberg algorithm 
The consensus method proposed in [6] is based on a 

modification of an algorithm introduced by Baeza-Yates and 
Perleberg to efficiently estimate the Hamming distance [7]. In 
this first stage of this algorithm, one computes, for each 
symbol 𝑠𝑠𝑠𝑠 ∈ 𝐴𝐴𝐴𝐴, the set 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) of zero-based positions where 𝑠𝑠𝑠𝑠 
appears in the pattern string; that is, 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) = {𝑗𝑗𝑗𝑗 ∶  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗+1 =
𝑠𝑠𝑠𝑠, 0 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑚𝑚𝑚𝑚 − 1}. Note that 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) is empty if 𝑠𝑠𝑠𝑠 does not 
belong in the pattern string. In the second stage of the 
algorithm, the search string is traversed, and for each symbol 
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 one increases a counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗−𝑞𝑞𝑞𝑞 for all 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗). 
The rationale behind this algorithm is that if a symbol 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 in the 
search string appears in the pattern string, then an instance of 
the pattern string might begin at positions 𝑗𝑗𝑗𝑗 − 𝑞𝑞𝑞𝑞, 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗) in 
the search string. After the search string is traversed, the 
counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 indicate the number of matching 
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Abstract— One of the fundamental tasks in bioinformatics 
consists in searching for patterns, in a protein or DNA sequence, 
that are sufficiently similar to a given motif. This problem is 
known as approximate string matching (ASM) and has several 
applications besides bioinformatics. The similarity between 
strings of symbols is typically evaluated by metrics such as the 
Hamming distance, the Levensthein distance, or correlation or 
consensus techniques. In this paper, a refinement of a recently 
introduced consensus algorithm is proposed and evaluated with 
real protein sequences from plants. Preliminary tests with real 
protein sequences from plants show that the proposed 
refinement can significantly increase the localization accuracy 
by up to 95%, while further reducing the number of false 
positives by around 80%. Thus, the proposed algorithm could be 
a useful tool in many biological applications. 
 

I. INTRODUCTION 

Approximate string matching (ASM) is one of the 
fundamental tasks in bioinformatics. Given a finite alphabet 𝐴𝐴𝐴𝐴, 
a pattern string 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑚𝑚𝑚𝑚 and a search 
string 𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏1𝑏𝑏𝑏𝑏2. . . 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴∗ of length 𝑛𝑛𝑛𝑛 (also called the search 
text), where * represents the Kleene star operation, the problem 
consists in finding all the substrings in 𝑏𝑏𝑏𝑏 which are sufficiently 
similar to 𝑎𝑎𝑎𝑎. This requires defining a similarity measure 
between strings. The most popular measures are the Hamming 
distance [1], which is equal to the number of mismatching 
symbols between two strings of equal length, or infinite if the 
strings have different lengths, and the Levensthein distance [2] 
(also called edit distance), which is equal to the number of edit 
operations (insertions, deletions, and substitutions of symbols) 
that must be performed in order to transform one of the strings 
into the other, where the strings may have different lengths. 
Other similarity measures are based on correlation methods 
[3], although these may not have a direct interpretation in 
terms of editing operations such as symbol insertions or 
substitutions. Given a similarity measure 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦), where 𝑥𝑥𝑥𝑥 and 
𝑦𝑦𝑦𝑦 are two strings, and a similarity threshold 𝑘𝑘𝑘𝑘, the ASM 
problem can be formally defined as follows: find all the indices 
𝑟𝑟𝑟𝑟 such that 𝑑𝑑𝑑𝑑(𝑎𝑎𝑎𝑎1𝑎𝑎𝑎𝑎2. . . 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+1. . . 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟+𝑠𝑠𝑠𝑠−1) ≤ 𝑘𝑘𝑘𝑘 for some 
non-negative integer 𝑠𝑠𝑠𝑠 that depends on 𝑟𝑟𝑟𝑟. Ideally, each value 
of 𝑟𝑟𝑟𝑟 should correspond to the first symbol of an approximate 
instance of the pattern string. However, solving this problem 
often results in a large number of false positives, often due to 
the fact that multiple consecutive indices may correspond to 
the same instance of the pattern string. For example, under the 
Levensthein measure, if a match is detected at position 𝑟𝑟𝑟𝑟 in the 
search string with an edit distance 𝑑𝑑𝑑𝑑 < 𝑘𝑘𝑘𝑘, then a match will 
also be reported at positions 𝑟𝑟𝑟𝑟 − 1 and 𝑟𝑟𝑟𝑟 + 1 (at least) with 
edit distance 𝑑𝑑𝑑𝑑 + 1 ≤ 𝑘𝑘𝑘𝑘. Depending on the size of the 
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alphabet, the length of the pattern string, and the similarity 
threshold, a typical search within a large DNA database may 
return between tens of thousands to several millions of false 
positives [4]. For this reason, a filtering stage is often 
performed to discard any matches that either correspond to an 
already reported instance, or are irrelevant for the application. 

Recently, a new ASM algorithm was proposed, which uses 
a consensus measure to assess the degree of similarity between 
strings, and also applies a post-filtering stage to significantly 
reduce the number of false positives with little computational 
cost [5,6]. The algorithm, however, has an important 
shortcoming: in practice, a reported index 𝑟𝑟𝑟𝑟 is often several 
positions (up to 𝑘𝑘𝑘𝑘) apart from the true beginning of an instance. 

In this paper, an improved version of the consensus 
algorithm is presented, where a second filtering stage is 
performed, based on the dynamic programming technique that 
is used to compute the Levensthein distance. The proposed 
method significantly improves the localization of the true 
beginning of each instance, while further reducing the number 
of false positives. 

The article is organized as follows: in Section II, the basic 
consensus algorithm, as introduced in [6], is briefly described, 
along with the original post-filtering stage. Section III will 
describe the proposed refinements. In Section IV, some 
preliminary results using real protein sequences will be 
presented and discussed. Finally, Section V will summarize 
our conclusions.  

 

II. BASIC CONSENSUS ALGORITHM 

A. Baeza-Yates and Perleberg algorithm 
The consensus method proposed in [6] is based on a 

modification of an algorithm introduced by Baeza-Yates and 
Perleberg to efficiently estimate the Hamming distance [7]. In 
this first stage of this algorithm, one computes, for each 
symbol 𝑠𝑠𝑠𝑠 ∈ 𝐴𝐴𝐴𝐴, the set 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) of zero-based positions where 𝑠𝑠𝑠𝑠 
appears in the pattern string; that is, 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) = {𝑗𝑗𝑗𝑗 ∶  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗+1 =
𝑠𝑠𝑠𝑠, 0 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑚𝑚𝑚𝑚 − 1}. Note that 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) is empty if 𝑠𝑠𝑠𝑠 does not 
belong in the pattern string. In the second stage of the 
algorithm, the search string is traversed, and for each symbol 
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 one increases a counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗−𝑞𝑞𝑞𝑞 for all 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗). 
The rationale behind this algorithm is that if a symbol 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗 in the 
search string appears in the pattern string, then an instance of 
the pattern string might begin at positions 𝑗𝑗𝑗𝑗 − 𝑞𝑞𝑞𝑞, 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗) in 
the search string. After the search string is traversed, the 
counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗 = 1, . . . , 𝑛𝑛𝑛𝑛 indicate the number of matching 
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symbols between the pattern string and the substring 
𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗. . . 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗+𝑚𝑚𝑚𝑚−1. The Hamming distance between these strings can 
simply be computed as 𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 . 

B. Generalization to insertions and deletions of symbols 
The Baeza-Yates and Perleberg algorithm, as described 

above, can only detect symbol mismatches, but is unable to 
take insertions and deletions of symbols into account. To 
overcome this problem, a simple strategy is introduced in [5] 
and [6]. Since any insertions or deletions might offset the 
length of an instance of the pattern string by up to 𝑘𝑘𝑘𝑘 symbols 
(where 𝑘𝑘𝑘𝑘 is the maximum edit distance allowed), the authors 
suggest to increase the counters 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗−𝑞𝑞𝑞𝑞+𝑟𝑟𝑟𝑟 for each 𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗) and 
for all 𝑟𝑟𝑟𝑟 = −𝑘𝑘𝑘𝑘, . . . , 𝑘𝑘𝑘𝑘. We have found that a better strategy is 
to simply replace the alpha-sets by an expanded set �̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠), 
which can be obtained as 

�̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) = {𝑞𝑞𝑞𝑞 + 𝑟𝑟𝑟𝑟 ∶  𝑞𝑞𝑞𝑞 ∈ 𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠), 𝑟𝑟𝑟𝑟 = −𝑘𝑘𝑘𝑘, . . . , 𝑘𝑘𝑘𝑘}. 
The expanded set �̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) can then be used instead of the set 

𝛼𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) in the Baeza-Yates and Perleberg algorithm described in 
the previous subsection. 

Note that, with this modification, the counters 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 are no 
longer related to the Hamming distance nor they are related to 
the Levensthein distance. Instead, these counters conform a 
voting system (i.e., a consensus) related to the likelihood that 
an approximate instance of the pattern string begins at a given 
position in the search string. If the �̂�𝛼𝛼𝛼(𝑠𝑠𝑠𝑠) sets are used, the 
counters take values between 0 and 𝑚𝑚𝑚𝑚. If a counter 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 exceeds 
a given threshold 𝑈𝑈𝑈𝑈 (not necessarily related to 𝑘𝑘𝑘𝑘), the 
algorithm reports position 𝑗𝑗𝑗𝑗 as a positive. 

C. Reduction of false positives 
As in many other ASM algorithms, the consensus 

algorithm described in the previous sections may report a large 
number of false positives. However, most of these are adjacent 
positions, corresponding to the same instances of the pattern 
string within the search string. In order to eliminate these false 
positives, one can perform a post-processing stage where for 
each sequence of consecutive positions reported as positives 
𝑗𝑗𝑗𝑗, . . . , 𝑗𝑗𝑗𝑗 + 𝑟𝑟𝑟𝑟, such that 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, . . . , 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗+𝑟𝑟𝑟𝑟 ≥ 𝑈𝑈𝑈𝑈, one can choose the first 
position 𝑝𝑝𝑝𝑝, 𝑗𝑗𝑗𝑗 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑗𝑗𝑗𝑗 + 𝑟𝑟𝑟𝑟 such that 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗, . . . , 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗+𝑟𝑟𝑟𝑟, and 
report 𝑝𝑝𝑝𝑝 as the only positive of the sequence. This filtering 
stage may reduce the number of false positives by 80% to 90% 
with very little computational cost. 

 

III. PROPOSED REFINATIONS 

One disadvantage of the consensus algorithm described in 
the previous section is that the reported positives may have a 
localization error of up to 𝑘𝑘𝑘𝑘 positions with respect to the true 
beginning of the pattern instances. This is because the 
maximum counter value in a group of consecutive positives 
does not always correspond to the start of an instance. To 
overcome this problem, one can compute the Levensthein 
distance between the pattern string and the search substring 
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝−𝑘𝑘𝑘𝑘. . . 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝+𝑚𝑚𝑚𝑚−1+𝑘𝑘𝑘𝑘, for each positive 𝑝𝑝𝑝𝑝 reported by the 
consensus method. One way to do this is by means of the 
classic dynamic programming algorithm originally adapted by 
Sellers [8] for string matching. We specifically use the text-
searching version reported in [9]. In this algorithm, one 

computes a matrix 𝐶𝐶𝐶𝐶 in column-wise or row-wise order using 
the following recursive formula: 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  = min(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗−1 + 𝛿𝛿𝛿𝛿(𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖, 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝−𝑘𝑘𝑘𝑘−1+𝑗𝑗𝑗𝑗),
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖−1,𝑗𝑗𝑗𝑗 + 1, 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗−1 + 1),  

where 𝑑𝑑𝑑𝑑(𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣) = 0 if 𝑢𝑢𝑢𝑢 = 𝑣𝑣𝑣𝑣 and 1 otherwise. It is also 
necessary to define 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖,0 = 1 for all 𝑖𝑖𝑖𝑖 and 𝐶𝐶𝐶𝐶0,𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗. 
Once this matrix has been computed, the bottom row contains 
the Levensthein distance between the pattern string and the 
text substring which ends at the corresponding column. For our 
application, we are interested in the beginning of the pattern 
instances, rather than the ending position; therefore, we apply 
the dynamic programming algorithm to the inverted input 
strings. Those values in the bottom row which result to be less 
or equal than 𝑘𝑘𝑘𝑘 will correspond to matching positions; 
however, at this point we already know that the text substring 
corresponds to a single instance of the pattern, so one must 
only choose one of the positions with distance lower or equal 
than 𝑘𝑘𝑘𝑘. We have found that the floor of the average among the 
matching positions yields a much better localization than the 
original consensus method. Moreover, this refinement can 
further reduce the number of false positives in two ways: (1) 
when a false positive from the consensus method does not 
correspond to an actual match, the dynamic programming 
refinement will report no matches, and (2) when two or more 
false positives from the consensus method correspond to the 
same instance of the pattern, the proposed refinement will 
likely report the same matching position for all of them, 
effectively reducing multiple positives into a single one. 

 

IV. PRELIMINARY RESULTS WITH REAL PROTEIN SEQUENCES 

To evaluate the proposed refinements, we have tested a 
C++ implementation of the proposed algorithm, as well as the 
original consensus method, with six different protein 
sequences from the following plants: Opuntia streptacantha, 
Arabidopsis thaliana, and A. lyrata [10,11,12]. Dehydrin 
proteins (DHN) are characterized by the presence of one or 
more K-segments consisting of approximately 15 amino acid 
residues [EKKGIM(E/D)KIKEKLPG], which form a putative 
amphiphatic 𝛼𝛼𝛼𝛼-helix. DHN proteins may also contain S-
segments [LHRSGS4-10(E/D)3] formed by a stretch of 4-10 
serine residues, and Y-segments [(V/T)D(E/Q)YGNP] that are 
located near the N-terminus [12,13]. DHN proteins, in general, 
share low sequence identities, so proper identification of 
conserved motifs is important for the classification of these 
proteins into the different DHN sub-types. 

Each of the six protein sequences contains multiple 
approximate instances of at least one of the patterns (K-
segment, S-segment or Y-segment), whose true locations (i.e., 
the position of the first symbol of each instance) were 
manually annotated by an expert biologist, and thus are known 
in advance. Among the six sequences, there are 4 S-segments, 
17 K-segments, and 8 Y-segments, for a total of 29 instances. 
In this preliminary evaluation, we apply both versions of the 
consensus algorithm (with and without the refinement 
proposed in Section III) and determine the following indices:  

- True positives (TP), the number of reported matches 
which correspond to a true instance 
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- False positives (FP), the number of reported matches 
which do not correspond to a true instance 

- False negatives (FN), the number of true instances 
that do not correspond to any of the reported matches 

- Localization error (LE), the average absolute 
difference between a reported true positive, and the 
position of the corresponding true instance. 

- Computation time (CT), the total search time for all 
the six protein sequences and all three patterns. 

In all cases, the edit distance threshold 𝑘𝑘𝑘𝑘 was chosen to be 
around 𝑚𝑚𝑚𝑚/3, where 𝑚𝑚𝑚𝑚 is the length of the pattern string; 
specifically, 𝑘𝑘𝑘𝑘 = 2 for the S-segment, 𝑘𝑘𝑘𝑘 = 3 for the Y-
segment, and 𝑘𝑘𝑘𝑘 = 6 for the K-segment. Also, following [7], 
the consensus threshold 𝑈𝑈𝑈𝑈 was chosen to be around 𝑈𝑈𝑈𝑈 =
(2/3)𝑚𝑚𝑚𝑚. Slight adjustments were made in order to achieve a 
100% true positive rate, thus increasing the number of false 
positives.  

The resulting indices, for each version of the algorithm, are 
reported in Table I. Moreover, Figure 1 shows the six protein 
sequences and the positions that the proposed algorithm 
(including the refinement stage) reported as positives. The 
localization error (LE) is significantly lower for the refined 
version of the consensus algorithm with respect to the basic 
version. This is because the refined algorithm is able to find 
the exact location on 22 of the 29 pattern instances, and finds 
7 more instances with a localization error of only 1. On the 
other hand, the basic algorithm yields a localization error of up 
to 6 for some instances (of the K-segment, where 𝑘𝑘𝑘𝑘 = 6 is 
used). Thus, in this experiment the proposed refinement 
reduces the localization error by 80% to 95%. Note also that 
the total number of false positives is 131 for the basic 
consensus method, while using the proposed refinement 
reports only 5 false positives; that is, a reduction of 95% of 
false positives. 

 Finally, we also measured the total computation time, for 
the search of the three patterns within the six protein 
sequences. Computation times with an Intel Core2Duo CPU 
running at 2.4 GHz were 500 𝜇𝜇𝜇𝜇s for the basic algorithm, and 
800 𝜇𝜇𝜇𝜇s for the refined version; therefore, in this test the 
proposed refinement increases computation time by around 
60%; however, this figure will depend on the number of 
positives reported by the basic consensus algorithm. 

 

V. CONCLUSIONS 
A refinement for the consensus method for approximate 

string matching, originally introduced in [5,6], was presented. 
This refinement, which uses the classic dynamic 
programming algorithm for computing the edit distance 
between two strings, significantly reduces the localization 
error and also reduces the number of false positives with an 
acceptable computational cost. Further research will focus on 
a more detailed evaluation, and a comparison with other state-
of-the-art methods. 
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TABLE I.  MATCHING RESULTS FOR SIX PROTEIN SEQUENCES USING 
THE BASIC CONSENSUS ALGORITHM AND THE PROPOSED REFINEMENT 

 S-segments K-segments Y-segments 
 LHRSGS EKKGIMDKIKEKLPG DEYGNP 
 𝑘𝑘𝑘𝑘 = 2, 𝑈𝑈𝑈𝑈 = 4 𝑘𝑘𝑘𝑘 = 6,𝑈𝑈𝑈𝑈 = 11 𝑘𝑘𝑘𝑘 = 3, 𝑈𝑈𝑈𝑈 = 4 

 Basic Refined Basic Refined Basic Refined 
TP 4 4 17 17 8 8 
FP 30 0 29 2 72 3 
FN 0 0 0 0 0 0 
LE 2.25 0.50 4.05 0.17 3.00 0.25 
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- False positives (FP), the number of reported matches 
which do not correspond to a true instance 

- False negatives (FN), the number of true instances 
that do not correspond to any of the reported matches 

- Localization error (LE), the average absolute 
difference between a reported true positive, and the 
position of the corresponding true instance. 

- Computation time (CT), the total search time for all 
the six protein sequences and all three patterns. 
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localization error (LE) is significantly lower for the refined 
version of the consensus algorithm with respect to the basic 
version. This is because the refined algorithm is able to find 
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7 more instances with a localization error of only 1. On the 
other hand, the basic algorithm yields a localization error of up 
to 6 for some instances (of the K-segment, where 𝑘𝑘𝑘𝑘 = 6 is 
used). Thus, in this experiment the proposed refinement 
reduces the localization error by 80% to 95%. Note also that 
the total number of false positives is 131 for the basic 
consensus method, while using the proposed refinement 
reports only 5 false positives; that is, a reduction of 95% of 
false positives. 

 Finally, we also measured the total computation time, for 
the search of the three patterns within the six protein 
sequences. Computation times with an Intel Core2Duo CPU 
running at 2.4 GHz were 500 𝜇𝜇𝜇𝜇s for the basic algorithm, and 
800 𝜇𝜇𝜇𝜇s for the refined version; therefore, in this test the 
proposed refinement increases computation time by around 
60%; however, this figure will depend on the number of 
positives reported by the basic consensus algorithm. 

 

V. CONCLUSIONS 
A refinement for the consensus method for approximate 

string matching, originally introduced in [5,6], was presented. 
This refinement, which uses the classic dynamic 
programming algorithm for computing the edit distance 
between two strings, significantly reduces the localization 
error and also reduces the number of false positives with an 
acceptable computational cost. Further research will focus on 
a more detailed evaluation, and a comparison with other state-
of-the-art methods. 
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Figure 1.  Results obtained for the six protein sequences. True instances of the pattern strings are represented using different colorings: S-segments are 

shown in red, K-segments in blue, and Y-segments in green. The reported matches (only the first position) are shown as underlines for the basic consensus 
method, and rectangular boxes for the refined algorithm proposed here. 

 


