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Abstract— In this paper, a segmentation method based on 

an active contours algorithm capable to detect not well-defined 
edges in 2D images, based on Mumford–Shah functional for 
segmentation and level sets, is used for the detection of the aortic 
arch anatomy in a Phase-Contrast Magnetic Resonance Imaging 
(PCMRI) data. The segmentation strategy followed requires an 
initial contour extracted from the central image of the aortic 
arch, which is obtained from merging two initial structures; 
then, the initial contour is propagated to the adjacent images in 
order to segment all the images with aorta information. The 
results found suggest that the proposed approach represents a 
robust alternative for detection of the aorta anatomy in PCMRI 
data based on the 3D reconstruction from 2D segmentations. 

Key words—Aorta segmentation, PCMRI, active contours, 
blood flow visualization. 
 
 

I.  INTRODUCTION 
 
 Cardiovascular diseases (CVDs) are a group of disorders 
of the heart and blood vessels, such as diseases of the aorta 
and its branches, heart valve diseases, arrhythmia, among 
others. In general, CVDs refers to conditions that involve 
narrowed of or blocked blood vessels, which can lead to a 
heart attack or a stroke, reason why CVDs remain the biggest 
cause of deaths worldwide; therefore, early detection is key 
to improving outcomes of CVDs [1]. In order to better 
understand the mechanism of initiation and progression of a 
CVD as well as to assess the presence of a particular 
pathology condition, flow patterns studies should be 
integrated with a morphometric characterization, which 
consists in evaluating size (diameter or radius, area) and 
shape (curvature or tortuosity) of vessels [2].  
 Magnetic Resonance Imaging (MRI) with Phase-
Contrast velocity encoding (PCMRI) is a particular sequence 
able to acquire simultaneously anatomical and functional 
images. This technique, exploiting the observation that spins 
moving through a magnetic field have a phase shift 
proportional to their velocity, enables to acquire images of 
blood flow velocity during the heart beat cycle [3]. Also it is 
a well-assessed routine clinical tool for the evaluation of 
cardiac function and heart diseases, valve abnormalities, and 
vessel blood flow [4]. A PCMRI data consist of magnitude 
images, visualizing the subject’s anatomy, and phase images 
composed of three volumes, each containing one of three 
velocity components: foothead (fh), right-left (rl), and 
anterior-posterior (ap) directions; these three images are 
acquired for each cardiac phase.  
 

 The main drawback of PCMRI data is its very low signal 
to noise ratio, which makes difficult a proper detection of 
borders from anatomical structures of interest, such as the 
aorta and their branches. In order to overcome this problem, 
we propose to use a segmentation technique known as Active 
Contours. There are many algorithms based on this technique, 
however many of them are not suitable for this kind of images 
because the stopping term depends on the gradient of the 
image (border of structures), which is not easy to handle with 
PCMRI data. The aim of this project is to segment the aorta 
and obtain information of the blood flow using a PCMRI-
sequence by an active contours approach based on an 
algorithm proposed by Chan-Vese [5] that can detect not 
well-defined edges in 2D images. The outline of this paper is 
as follow. In section II, we describe briefly the PCMRI data 
acquisition, the theory of Active Contours, the aorta 
segmentation process followed, the 3D reconstruction 
method used, and the blood flow estimation process. Section 
III presents the results found, together with a brief discussion. 
Finally, in section IV, conclusions are drawn. 
 

II. METHODS 
 
A. Images Dataset   

  
Images used in this work come from PCMRI data of the 

aortic arch of one healthy male subject that signed the 
informed consent form approved by an Institutional Review 
Board. The images were acquired using a MR Philips 
Achieva 1.5 T scanner. A T1-weighted cardiac-gated 
respiratory compensated 3D Phase Contrast Turbo Gradient 
Echo sequence was used. Repetition Time/Echo Time equal 
to 5.4/3.0 ms and a Velocity Encoding (VENC) value equal 
to 150 cm/s in all three space directions were adopted. The 
voxel size was 2 x 2 x 2 mm and the heartbeat was divided in 
2 cardiac phases, systole and diastole. Because most of the 
blood flow occurs in the systolic phase, the present work 
focused in this particular images dataset; an example of the 
PCMRI data used is presented in Fig. 1.  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Example of PCMRI data in (a) anterior-posterior (ap), (b) foot-head 
(fh) and (c) left-right (lr) directions. 
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B. Active Contours Theory  
 

In order to extract an anatomic model of the aortic arch, a 
segmentation process, based on an active contours approach 
proposed by [5], was used. This method detects objects in an 
image based on Mumford–Shah functional for segmentation 
and level sets [6]. This model can detect objects whose 
boundaries are not necessarily defined by gradient. In the 
level set formulation, the problem becomes a mean-curvature 
flow-like evolving the active contour, which will stop on the 
desired boundary. This model use calculus of variations and 
is characterized by start drawing a contour in the plane of the 
image. In this way, an initial segmentation is established and 
then the contour evolve according to some equation. The aim 
is to transform the contour so that it stops at the edges of the 
region to segment. 

The goal of the segmentation algorithm is to minimize a 
functional 𝐹𝐹 for a given image 𝑢𝑢0, using the level set 
𝜙𝜙(𝑥𝑥, 𝑦𝑦) =  0 to segment objects of interest in 𝑢𝑢0. Now, using 
the Heaviside function 𝐻𝐻, and the one-dimensional Dirac 
measure 𝛿𝛿, as described in [5], the energy 𝐹𝐹(𝑐𝑐1, 𝑐𝑐2, 𝜙𝜙) can be 
written as: 
 

𝐹𝐹(𝑐𝑐1, 𝑐𝑐2, 𝜙𝜙)

= 𝜇𝜇 ∫ 𝛿𝛿(𝜙𝜙(𝑥𝑥, 𝑦𝑦))|∇𝜙𝜙(𝑥𝑥, 𝑦𝑦)|
 

Ω

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑣𝑣 ∫ 𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦))𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
 

Ω

+ 𝜆𝜆1 ∫ |𝑢𝑢0(𝑥𝑥, 𝑦𝑦) − 𝑐𝑐1|2 𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

Ω

+ 𝜆𝜆2 ∫ |𝑢𝑢0(𝑥𝑥, 𝑦𝑦) − 𝑐𝑐2|2(−𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦)))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

Ω
            (1) 

 
where 𝜇𝜇 ≥ 0, 𝑣𝑣 ≥ 0, and 𝜆𝜆1, 𝜆𝜆2 > 0 are parameters selected 
by the user to fit a particular class of images. The first term of 
the equation can be considered as a length penalization of the 
contour, so 𝜇𝜇 must be fixed depending on the characteristics 
of the objects in the image which are intended to segment, for 
example, if we have to detect only larger objects, and to not 
detect smaller objects (like points, due to the noise), then 𝜇𝜇  
has to be larger. The second term is the area penalization of 
the segmented image, here  𝑣𝑣 is a constraint on the área inside 
the curve that helps to increase the propagation speed. 
Finally, 𝜆𝜆1 and 𝜆𝜆2 weights and give importance to the region 
inside and outside of the boundary. Then,  𝑐𝑐1 and 𝑐𝑐2 are in 
fact given by: 
 

{𝑐𝑐1(𝜙𝜙) = average(𝑢𝑢0)in {𝜙𝜙 ≥ 0}
𝑐𝑐2(𝜙𝜙) = average(𝑢𝑢0)in {𝜙𝜙 < 0}                                          (2) 

 
Keeping 𝜙𝜙 fixed and minimizing the energy 𝐹𝐹(𝑐𝑐1, 𝑐𝑐2, 𝜙𝜙)  

with respect to the constants 𝑐𝑐1 and 𝑐𝑐2, it is easy to express 
these constants function of 𝜙𝜙 by: 

 

𝑐𝑐1(𝜙𝜙) =
∫ 𝑢𝑢0(𝑥𝑥, 𝑦𝑦)𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Ω
∫ 𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Ω
                                   (4) 

 

𝑐𝑐2(𝜙𝜙) =
∫ 𝑢𝑢0(𝑥𝑥, 𝑦𝑦)(1 − 𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦)))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Ω
∫ (1 − 𝐻𝐻(𝜙𝜙(𝑥𝑥, 𝑦𝑦)))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Ω
                       (5) 

 
Keeping 𝑐𝑐1 and 𝑐𝑐2 fixed, and minimizing 𝐹𝐹 with respect 

to 𝜙𝜙, we deduce the associated Euler–Lagrange equation for 
𝜙𝜙. Parameterizing the descent direction by an artificial 
variable time, the equation in 𝜙𝜙(𝑡𝑡, 𝑥𝑥, 𝑦𝑦) (with 𝜙𝜙(0, 𝑥𝑥, 𝑦𝑦) =
𝜙𝜙0(𝑥𝑥, 𝑦𝑦) defining the initial contour) is: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝛿𝛿𝜀𝜀(𝜙𝜙) [𝜇𝜇 div ( ∇𝜙𝜙

|∇𝜙𝜙|) − 𝑣𝑣 − 𝜆𝜆1(𝑢𝑢0 − 𝑐𝑐1)2

+ 𝜆𝜆2(𝑢𝑢0 − 𝑐𝑐2)2] = 0   in (0, ∞) x Ω,     (6) 
 
 
For the discretization of the equation in 𝜙𝜙, a finite 

differences implicit scheme was used. Then, a linear system 
is obtained and can be solved by an iterative method. For 
more details, we refer the reader to [5]. 

 
C. Aortic Segmentation and Reconstruction 
 
Observing the image sets with the information of velocity 

in the three different directions, we can notice that in fh 
images the aorta has better defined boundaries than rl and ap 
images. In these images (Fig. 1-b) it is possible to observe 
that the surface of the aorta is divided into two main regions: 
the ascendant aorta (clear zone) and the descendent aorta 
(dark zone). Hence, it was necessary to obtain a first 
segmentation from these two regions. Two initial contours 
were created, one for each region of the aorta and we set the 
value of 𝜇𝜇 to 1000 and 400 iterations. In this work, both 
values were calculated empirically. In this study we choose 
the parameters as follows: 𝜆𝜆1 =  𝜆𝜆2 =  1, 𝑣𝑣 =  0, ℎ =  1 (the 
step space), 𝛥𝛥𝑡𝑡 =  2 (time step). We adjust the value of 𝜇𝜇 to 
1000 because the noise in the images was considerably high 
[5].  

Afterward, we use morphologic operations to improve 
and merge these two contours [7]. First, we applied an erosion 
process to eliminate the sites that did not belong to the aortic 
surface and then we use a dilatation process to recover the 
area, in both cases a disk was used as structuring element with 
a radius of 2 pixels. Finally, the union of both segmented 
regions of the aorta were merged to obtain one unique surface 
represented as a binary mask. Then, this binary mask was 
used as an initial contour for the upper and lower adjacent 
images. We repeat this process until all images were 
segmented. 

In addition, to corroborate that the segmentations obtained 
from the studied method correspond properly to the anatomy 
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Fig. 2.  PCMRI fh dataset with the corresponding aorta segmentation (white contour) on each image. 
 

 
of the aortic arch, a regular 3D reconstruction was 
performed in MatLab®. 

 
D. Aortic Blood Flow 
 
A 3D reconstruction of the blood flow was also 

performed, it was carried out using the obtained 
segmentation in fh direction to conserve the useful 
information in the PCMRI volumes (fh, rl and ap), and thus 
obtain the magnitud and direction of the flow inside the 
aorta. Now, since all the voxel values are positive, it was 
necessary to substract the mean gray value in such a way 
that it was possible to detect positive values which indicate 
upward direction and negative values which indicate 
downward direction. Having done this normalization, we 
used the Matlab® function coneplot being possible to 
display cones indicating the flow direction within the aorta 
segmented anatomy. 

For a better understanding of the methodology studied 
in this paper, we propose a strategy that can be summarize 
in the next steps:   

1. Apply a median filter, before segmentation, in order 
to eliminate noise from the images preserving the edges 
[8]. 
2. Create two initial contours, with no specific form 
that could be used as initialization for the central image.  

3. Segment two regions from the central image, 
corresponding to the ascending and descending aorta 
regions.  
4. Merge both segmented regions, by applying 
morphological operations (erosion followed by a 
dilatation process).  
5. Segment adjacent images, using the segmentation 
obtained in the previous step as the input contour for 
the adjacent images.  
6. Segmentation of all the images, by propagating the 
contours obtained in step 5 to their respective adjacent 
images, until reaching the first and last slide from the 
image dataset. 
7. Perform a 3D reconstruction, using all the obtained 
2D segmentations. 
8. Graph blood flow, taking the information of the 
segmented area in all three directions. 
 

 
III. RESULTS AND DISCUSSION 

 
A. Aorta Segmentation 
 

In Fig. 2, the results obtained by segmenting the entire 
set of fh systolic PCMRI images following the proposed 
strategy are presented, where is possible to observe, for 
each image, a white contour corresponding to the aorta 
section in each 2D slide; in this images is also possible to 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (l) (m) (n) (o) 

(p) (q) (r) (s) (t) 
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observe how each segmentation properly fits the aorta. 
Fig.2 (s) and Fig.2 (t) are the exception because no 
contours are shown in these two slides due to absence of 
aorta information, even if these images belong to the fh  

 
(a)                                                 (b) 

Fig. 3. (a) 3D reconstruction of the aortic arch from the 2D 
segmentations of the PCMRI data, (b) Blood flow in the aortic arch. 

 
images dataset, suggesting that the active contours method 
is capable to properly track the regions of interest by the 
propagation of the contours.  
 
 
B. Aorta 3D Reconstruction and Blood Flow  
 

Fig. 3 (a) shows the result of the volumetric 
reconstruction of the aortic arch using the set of 2D 
segmentations obtained from the studied methodology. In 
this figure is easy to observe that the achieved 
segmentations are adequate due to the proper form of the 
obtained surface representing the aortic arch. 

In Fig. 3 (b), we can visualize the blood flow obtained 
from the information in fh, ap and rl volumes and the 
segmentation found before. Here is possible to observe that 
the blood flow is stronger in the ascending aorta and aortic 
arch than the descending aorta; this is because the PCMRI 
was acquired at the beginning of the systole. It is also 
important to note the details that can be appreciated in these 
images, since we can observe the flow going to the 
brachiocephalic trunk in the upper part of the aortic arch. 
 
 

IV. CONCLUSIONS 
 

The active contours approach based on the Mumford–
Shah functional and level sets provided an acceptable 
segmentation of the aorta in PCMRI images; and because 
of its robustness to the initialization this method could 
represent a useful tool for the segmentation of different 
anatomical structures of interest presented in noisy images, 

and could be used as an alternative for the representation 
of 3D structures constructed from a set of 2D regions.  

The blood flow obtained shows the expected results, it 
can be appreciated a consistent flow in each section of the 
aorta, including the branches at the top of the arch. 

As future work, this approach will be compared with 
state of the art segmentation algorithms that works in 3D in 
order to assess its accuracy and speed, and also if the 
obtained segmentation in this work could be used as 
initialization to help improve the accuracy of more 
complex segmentation algorithms. Also, we pretend to 
calculate quantitatively the blood flow in the aorta during 
the entire cardiac cycle (systole and diastole), that can be 
achieved using the segmentations obtained and the 
gradients of PCMRI. To achieve the quantification of blood 
flow in the aorta, we will develop an analysis with 2D 
planes that would be positioned in different regions of the 
artery, and in this way use the image data to calculate peak 
and mean velocities and flow. Further, evaluate and 
compare the presented blood flow approach with other 
methods that allow a better visualization of the blood flow 
during all the cardiac cycle will be studied. 
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