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IV.  DISCUSIÓN 
 

 Los receptores postsinápticos se comportan como 
canales iónicos, ya que generan una corriente eléctrica en 
respuesta a la presencia de glutamato en la zona de la 
membrana postsináptica.  La activación de estos canales 
depende fuertemente del número de moléculas de glutamato 
presentes en el tiempo, aunque también está influida por las 
constantes de transición entre estados.  Como se ha 
reproducido en nuestras simulaciones, esta activación ocurre 
en menos de un milisegundo, mientras que la desactivación 
ocurre más lentamente. 

 
 El comportamiento de la corriente postsináptica es 

congruente con los estudios reportados para la sinapsis 
glutamatérgica, en los cuales se ha concluido que la 
respuesta de los receptores sigue la cinética de secreción del 
neurotransmisor [7]. Por otro lado, la corriente postsináptica 
crece en proporción a la cantidad de moléculas de 
glutamato, como se muestra en la Figura 3, para una misma 
dinámica.  Sin embargo, es notorio que cuando el número de 
moléculas es pequeño (N=100), no sólo el número de 
receptores abiertos es menor (~10% de la Ipost con 
N=10000) sino que la activación es mucho más lenta (~5 
ms).  Esto hace pensar que en régimen de pocas partículas, 
los receptores son más susceptibles de entrar en estado 
inactivo, o desensibilizado, tal como se ha observado 
experimentalmente para estimulaciones débiles [7].   

 
 La simulación estocástica de los modelos de estados, 

como el utilizado en este trabajo, permite tomar en cuenta la 
influencia de la probabilidad de apertura de los receptores en 
la corriente postsináptica, al tiempo que permite estimar 
adecuadamente la corriente generada en presencia de pocas 
moléculas de glutamato.  El algoritmo estocástico utilizado 
permitió estimar las transiciones entre estados hasta alcanzar 
el estado activo, en función del número de moléculas de 
glutamato presentes en el tiempo, obteniéndose que la 
cantidad de partículas, así como la cinética de secreción 
determinan la respuesta postsináptica en una escala temporal 
corta, tal como se ha reportado para los receptores AMPA 
de glutamato [2]. 
 

V.  CONCLUSIÓN 
 

       En las sinapsis del sistema nervioso central, la 
transmisión de información entre neuronas es un proceso 
extremadamente rápido, cuya latencia abarca unos cuantos 
milisegundos desde la aparición del estímulo, por lo que es 
de gran interés dilucidar cómo se logra este proceso tan 
eficiente en las diferentes etapas.  En este trabajo, hemos 
estudiado la respuesta postsináptica en función de la 
dinámica del glutamato, concluyendo que esta dinámica 
determina la respuesta a escalas temporales cortas. 
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Classification of hand movements in motor execution and motor
imagery tasks from EEG signals recorded with a low-cost recording

system
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Abstract— This work studies the classification between rest
and movement during motor execution and motor imagery
of the left and/or right hand clenching from brain elec-
troencephalography (EEG) signals recorded with a low-cost
commercially available EEG recording system. Eleven healthy
subjects participated in the study. EEG signals were recorded
while the participants executed and imagined left and/or right
clenching movements. The results showed the possibility to
recognize between resting and movement.

Keywords— Brain-Computer Interface, electroencephalogra-
phy, motor execution, motor imagery, power spectral density.

I. INTRODUCTION

Brain-Computer interfaces (BCI) have emerged as a new
technology that aim to provide people with disabilities a
new non-muscular communication channel for sending com-
mands to the external world to control mobility devices [1].
These systems are based on the recording and processing of
the brain activity in order to decode the user intention, which
is then translated into control signals for a target application
such as a spelling device, the control of a computer cursor,
a tele-presence robot, a robotic wheelchair or a video game
[2], [3], [4]. Most of BCIs are mainly based on non-invasive
recording of the brain signals with the electroencephalogram
(EEG) technique [5]. This is because this technique provides
a unique access to the electrical brain activity with higher
temporal resolution. This paper focuses on the study of EEG
brain signals in the context of BCI systems.

So far, EEG-based BCI research is mainly focused on
developing technology for patients with motor disabilities
with diverse origins such as; brain stroke or spinal cord
injury. However, most of the applications for these users are
still in laboratory settings, in addition, real potential users
have no easy access to such technology. Apart from the
high complexity in the recognition of the user intention from
the EEG signals, this is because EEG recording systems
are expensive and not fully portable. For this reason, it is
important to study and to validate BCI technology with low-
cost EEG recording systems. Some previous works have
addressed this research line [6], [7], [8].

To address these issues, this work studies the recognition
between rest and movement during motor execution and
motor imagery tasks from electroencephalographic signals
recorded with a commercially available low-cost EEG sys-
tem. Eleven right-handed healthy subjects participated in the
experiments, which were based on the left- and right-hand
execution and imagery of clenching movements. The goal

was to evaluate the performance in the classification at the
trial level between rest and execution/imagery of the hand
movement. Results showed the possibility of using EEG
signals recorded with a low-cost recording system that differ-
entiates between rest and movement in motor execution and
motor imagery tasks, which could be incorporated in brain-
computer interface applications out of laboratory settings.
The manuscript is organized as follows: section II describes
the methods, section III describes the results, and finally
section IV presents the conclusions and future work.

II. MATERIALS AND METHODS

A. Participants

Eleven healthy students (nine males and two females) of
the engineering school were recruited to participate in this
study (age range, 20-24 years; mean ± std, 22 ± 2 years). All
recruited participants were right-handed and had previously
never participated in BCI or EEG recording experiments. All
participants were duly informed about the content and aims
of the study and consent forms were obtained from all of
them.

B. Experiment

During the execution of the experiment, participants were
comfortably seated in front of a computer screen with both
forearms resting on their lap. Figure 1 shows a snapshot of
a participant while performing the experiment. The whole
execution of the experiment was controlled by visual cues
presented on the screen, which instructed the participants in
the execution of the task and sent synchronization signals
to the EEG recording system. The experiment consisted of
several trials in two different conditions: (i) motor execution
of the left hand or right hand (clenching) at a natural
and effortless speed, and (ii) motor imagery of the left
hand or right hand (clenching) at the same natural and
effortless speed. Prior to the execution of the experiment,
the experimenter instructed the participants by describing the
movements while executing or imagining them.

Each trial consisted of the time sequence depicted in figure
1. The first cue instructed the participants to rest and to adopt
the initial position, which lasted three seconds (rest phase).
The second cue randomly displayed an arrow pointing to the
left or to the right and indicated the participants to perform
the movement (motor execution or motor imagery) of the
corresponding hand during three seconds (movement phase).

dx.doi.org/10.24254/CNIB.14.35
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The last third cue indicated to the participants that they
could relax and blink while maintaining the initial position,
which also lasted three seconds (relax phase). Between the
time of the first and third cues (rest and movement phases),
participants were instructed to avoid blinking and perform
movements with the eyes, head, arms or legs.

For each participant, the experiment was executed in four
blocks (two blocks for each experimental condition) each
including fifty trials, resulting in a total of two hundred trials
(one hundred for each condition) of nine second each. After
each block, participants were encouraged to rest as long as
necessary to avoid fatigue.

Fig. 1. Top: Snapshots of the experimental setup showing a participant
with the EEG recording system while performing the experiment. Bottom:
Temporal sequence of one trial during the execution of the experiment.

C. Data Recording System

EEG signals were recorded from 14 scalp locations ac-
cording to the international 10/20 system using the low-cost
commercially available Emotiv EPOC Neuroheadset system.
Signal were recorded at a sampling frequency of 128Hz
with two reference electrodes CMS (on the left side) and
DRL (on the right side), and no filtering was applied. The
impedance for all electrodes was kept below 5kΩ. During
the whole execution of the experiment this process was
controlled by the experimenter. The signal acquisition and
the visual application that controlled the execution of the
experiment were developed under BCI2000 platform [9].

D. Data preprocessing

For each participant, the EEG signals were segmented in
trials of 9 seconds using the second cue as reference, there-
fore; each trial lasted from −3 to 6 seconds. Visual inspection
was applied to all trials and trials contaminated with elec-
trooculographic (EOG) or electromyographic (EMG) activity
were discharged. Subsequently, each trial was trimmed from
−3 to 3 seconds, thus the time interval [−3, 0)s corresponds

to the rest phase while the time interval [0, 3)s corresponds
to the movement phase. EEG signals were bandpass-filtered
from 0.5 to 60Hz using a zero-phase shift filter and common
average reference (CAR) filter. After this preprocessing, on
average 90 ± 7 trials (minimum of 83 and maximum of 96
trial) per participant and condition were kept and used for
further data analysis.

E. Data analysis: r-squared

The differences of the power spectral density (PSD) be-
tween the rest and the movement phases were evaluated sep-
arately for each experimental condition using the r-squared
analysis [10]. The power spectral density was computed
from the EEG activity of each electrode (separately for each
trial in both, the rest phase and movement phase) for the
frequency range between 2 and 40Hz at a resolution of
1Hz using the fast Fourier transform (FFT) with overlapping
Hamming-windowed epochs. Finally, the r-squared values
for each electrode and frequency were computed as the
square Pearson’s linear correlation coefficient between the
values of the power spectral density and the labels of −1 and
+1 for the rest phase and the movement phase, respectively.

F. Features and classification

The aim for each experimental condition was to recognize
separately, between rest and movement (i.e. to identify at the
trial level whether the user is resting or executing/imagining
the hand clenching).

Features were computed using the power spectral density
(PSD) as done for the r-squared analysis. Features com-
puted in the rest phase ([−3, 0)s) were labeled as rest
while features computed in the movement phase ([0,−3)s)
were labelled as movement. The power spectral density
of frequencies contained within the α : [8 − 14]Hz and
β : [15−30]Hz motor-related frequency bands presenting the
highest r-squared values were selected by visual inspection
for each participant, electrode and experimental condition.
Finally, features were z-score normalized.

The classification model was based on the Support Vector
Machine (SVM) technique as this classifier is extensively
used in EEG-based motor tasks recognition [11]. We assessed
the SVM with a Radial Basis Function Kernel with hyper-
parameters set to C = 1 and σ = 0.5 using the freely-
available LIBSVM software package [12].

G. Evaluation Process and Metrics

The classification between rest and movement was
assessed using each channel individually, the full set of
14 channels and the subset of 6 channels that presented
the higher r-squared values and are closest to the motor
cortex (FC5, FC6, F3, F4, F7 and F8). Thus, sixteen
classification scenarios were evaluated for each subject and
experimental condition.

The performance of the classifier in each scenario was
assessed by a ten-fold cross-validation procedure individually
for each participant. In each case, the total set of trials was
sampled without replacement to construct a mutual exclusive
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The last third cue indicated to the participants that they
could relax and blink while maintaining the initial position,
which also lasted three seconds (relax phase). Between the
time of the first and third cues (rest and movement phases),
participants were instructed to avoid blinking and perform
movements with the eyes, head, arms or legs.

For each participant, the experiment was executed in four
blocks (two blocks for each experimental condition) each
including fifty trials, resulting in a total of two hundred trials
(one hundred for each condition) of nine second each. After
each block, participants were encouraged to rest as long as
necessary to avoid fatigue.

Fig. 1. Top: Snapshots of the experimental setup showing a participant
with the EEG recording system while performing the experiment. Bottom:
Temporal sequence of one trial during the execution of the experiment.

C. Data Recording System

EEG signals were recorded from 14 scalp locations ac-
cording to the international 10/20 system using the low-cost
commercially available Emotiv EPOC Neuroheadset system.
Signal were recorded at a sampling frequency of 128Hz
with two reference electrodes CMS (on the left side) and
DRL (on the right side), and no filtering was applied. The
impedance for all electrodes was kept below 5kΩ. During
the whole execution of the experiment this process was
controlled by the experimenter. The signal acquisition and
the visual application that controlled the execution of the
experiment were developed under BCI2000 platform [9].

D. Data preprocessing

For each participant, the EEG signals were segmented in
trials of 9 seconds using the second cue as reference, there-
fore; each trial lasted from −3 to 6 seconds. Visual inspection
was applied to all trials and trials contaminated with elec-
trooculographic (EOG) or electromyographic (EMG) activity
were discharged. Subsequently, each trial was trimmed from
−3 to 3 seconds, thus the time interval [−3, 0)s corresponds

to the rest phase while the time interval [0, 3)s corresponds
to the movement phase. EEG signals were bandpass-filtered
from 0.5 to 60Hz using a zero-phase shift filter and common
average reference (CAR) filter. After this preprocessing, on
average 90 ± 7 trials (minimum of 83 and maximum of 96
trial) per participant and condition were kept and used for
further data analysis.

E. Data analysis: r-squared

The differences of the power spectral density (PSD) be-
tween the rest and the movement phases were evaluated sep-
arately for each experimental condition using the r-squared
analysis [10]. The power spectral density was computed
from the EEG activity of each electrode (separately for each
trial in both, the rest phase and movement phase) for the
frequency range between 2 and 40Hz at a resolution of
1Hz using the fast Fourier transform (FFT) with overlapping
Hamming-windowed epochs. Finally, the r-squared values
for each electrode and frequency were computed as the
square Pearson’s linear correlation coefficient between the
values of the power spectral density and the labels of −1 and
+1 for the rest phase and the movement phase, respectively.

F. Features and classification

The aim for each experimental condition was to recognize
separately, between rest and movement (i.e. to identify at the
trial level whether the user is resting or executing/imagining
the hand clenching).

Features were computed using the power spectral density
(PSD) as done for the r-squared analysis. Features com-
puted in the rest phase ([−3, 0)s) were labeled as rest
while features computed in the movement phase ([0,−3)s)
were labelled as movement. The power spectral density
of frequencies contained within the α : [8 − 14]Hz and
β : [15−30]Hz motor-related frequency bands presenting the
highest r-squared values were selected by visual inspection
for each participant, electrode and experimental condition.
Finally, features were z-score normalized.

The classification model was based on the Support Vector
Machine (SVM) technique as this classifier is extensively
used in EEG-based motor tasks recognition [11]. We assessed
the SVM with a Radial Basis Function Kernel with hyper-
parameters set to C = 1 and σ = 0.5 using the freely-
available LIBSVM software package [12].

G. Evaluation Process and Metrics

The classification between rest and movement was
assessed using each channel individually, the full set of
14 channels and the subset of 6 channels that presented
the higher r-squared values and are closest to the motor
cortex (FC5, FC6, F3, F4, F7 and F8). Thus, sixteen
classification scenarios were evaluated for each subject and
experimental condition.

The performance of the classifier in each scenario was
assessed by a ten-fold cross-validation procedure individually
for each participant. In each case, the total set of trials was
sampled without replacement to construct a mutual exclusive

training and testing folds. The cross-validation procedure was
complete when all ten combinations of train and tests sets
were validated. To measure performance in each fold, the
decoding accuracy or DA was computed as the percentage
of correctly predicted trials.

The statistical significance of the DA was assessed using
the binomial cumulative distribution at the α = 0.05 sig-
nificance level [13]. This level provides the boundary from
which the DA is statistically significant above chance level,
which is important as the chance level is sensible to the
number of trials.

III. RESULTS
A. Data analysis

The r-squared analysis of the EEG activity revealed dif-
ferences, for both the resting and the movement conditions.
These results, across all subjects and trials, are presented
in figure 2. This analysis shows differences in the power
spectral density between the rest phase and the movement
phase mainly in frontal and frontal-central electrodes (FC5,
FC6, F3, F4 78 and F8, which are the closest to the motor
cortex), and in the motor-related frequency bands (between
10Hz and 30Hz). Importantly, note that these differences
are stronger in the movement execution condition than in
the movement imagery condition.

Fig. 2. r-squared analysis across all subjects and trials for both, movement
execution and movement imagery conditions. Results are presented for all
electrodes (vertical axis) and from 2 to 40Hz at a resolution of 1Hz
(horizontal axis). In both experimental conditions, differences in the power
spectral density between the relax and movement phases are observed in the
frontal and frontal-central electrodes and in motor-related frequency bands.

B. Classification accuracy

Figure 3 shows, for both experimental conditions and for
all classification scenarios, the decoding accuracy DA results
averaged across all subjects. For the movement execution
condition, DA is significant above chance level (p < 0.05)
for all classification scenarios except for electrodes AF4
and P8. The higher DA is achieved when using the full
set of channels and the subset of best channels (DA =
79% and DA = 78%, respectively), while when using
a single channel; the best performance is achieved with
electrode FC5 (DA = 69%). For the movement imagery
condition, DA is significant above chance level (p < 0.05)
solely when using electrodes F3, O1, AF4, O2, the full
set of channels and the subset of best channels. As in the
movement execution condition, the higher DA is achieved
when using the full set of channels and the subset of best
channels (DA = 74% and DA = 72%, respectively). When
using a single channel, the best performance is achieve
with electrode AF4 (DA = 63%). These results also show
that irrespective of the classification scenario, the higher
classification rates are achieved in the movement execution
condition, rather than in the movement imagery condition.

Fig. 3. Decoding accuracy DA results averaged across all subjects for both
experimental conditions (movement execution and movement imagery) and
for all classification scenarios. In both conditions, the best performance is
achieved with the full set of channels and the subset of best channels. Red
dotted lines represent the bound for which DA is significant above chance
level (59%).
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Figure 4 shows, the decoding accuracy DA results for
both experimental conditions, averaged across all subjects
for the three best classification scenarios: the best channel,
the full set of channels and the subset of best channels.
In both conditions, the best performance is achieved when
using the full set of channels (79% and 74% for movement
execution and movement imagery, respectively), while the
lower performance is achieved when using the best channel
(69% and 63% for movement execution and movement
imagery, respectively). In addition, these results confirm
that the performance is higher in the movement execution
condition (69%, 79% and 78% for the best channel, the full
set of channels and the subset of best channels, respectively)
than in the movement imagery condition (63%, 74% and
72% the best channel, the full set of channels and the subset
of best channels, respectively).

Fig. 4. Decoding accuracy DA results averaged across all subjects for both
experimental conditions (movement execution and movement imagery) and
for the three best classification scenarios: the best channel, the full set of
channels and the subset of best channels.

IV. CONCLUSIONS
This work studied the classification between rest and

movement during motor execution and motor imagery of the
left and/or right hand clenching from brain signals recorded
with a low-cost EEG recording system. Although it is a
motor task, wasn’t used electrodes on this area, because the
EEG system used in the experiments doesn’t have it.

On the one hand, the r-squared analysis of the power
spectral density of the recorded EEG signals revealed that,
in both, hand movement execution and hand movement im-
agery, the stronger differences between rest and movement
are observed in electrodes FC5, FC6, F3, F4 F7 and
F8, and in the motor-related alpha and beta frequency
bands. Those electrodes are located in the fronto and fronto-
central scalp regions and correspond precisely to the closest
electrodes of the motor cortex. In addition, the differences
between rest and movement are stronger in hand movement
execution than in hand movement imagery, this is because
the power spectral activity is more prominent during actual
movements than during imagined movements.

On the other hand, the classification was evaluated using
power spectral features for each channel solely, the full

set of channels and the subset of best channels. In both
experimental conditions, the higher classification rates were
achieved when using the full set of channels and the subset of
best channels. In addition, those electrodes that provided the
best classification performance were those located closest to
the motor cortex. Finally, the results showed that movement
execution condition outperforms the movement imagery con-
dition in all the evaluation scenarios, which agrees with the
results of the r-squared analysis and is due to the fact that the
power spectral activity during movement is more prominent
in real movements than in imagined movements.

In summary, this study shows the possibility of using a
low-cost EEG recording system to recognize between rest
and movement in motor execution and motor imagery tasks,
which could be used as the basis for a low-cost and fully
portable brain-computer interface, based on motor-related
mental tasks. Future work involves the use of the classifi-
cation model that uses the full set of electrodes to provide
two mental commands to control a robotic wheelchair based
on motor imagery, as well as the evaluation of the recognition
of four motor mental states.
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