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On the selection of FIR bandpass filters for low frequency EEG
synchronization applied to A-phase analysis during sleep

Arce-Guevara V.1 and Alba A.1 and Mendez M.O.1
1Facultad de Ciencias, Universidad Autónoma de San Luis Potosı́

Abstract— One way to estimate the instantaneous amplitude
and phase of a real-valued signal consists in passing the signal
through a bank of quadrature filters. However, a badly designed
filter may introduce distortions in the estimations. The objetive
of this work is to compare the output phase and amplitude
envelope of three bandpass FIR quadrature filters. On the first
stage, this study uses as input a synthetic signal whose phase
is known, in order to perform a quantitative assessment of
the performance of each filter. The bandwidth of the filters
is varied in order to see its effect on the output signal.
On the second stage, a study of changes in dynamic brain
connectivity was made using electroencephalographic data for
healthy patients during sleep. Results suggest that the type of
filter and its bandwidth must be chosen carefully in order
to avoid distortions that may bias the results of any further
analysis.

Index Terms— Electroencephalography, CAP, biomedical sig-
nal processing, biological information theory.

I. INTRODUCTION

During the analysis of many electrophysiological signals,
it is often required to analyze certain components whose
frequencies are relatively low, with respect to the bandwidth
of the signal, or its sampling rate. One example, in which
we are particularly interested, is the analysis of delta waves
in electroencephalographic (EEG) signals. The bandwidth of
EEG signals is typically defined between 0.1 Hz and 100
Hz, and these signals are often acquired using sampling
rates between 100 Hz and 1000 Hz. However, the delta
band ranges from 0.1 to 4 Hz, and some authors may even
split this range in low-delta (0.1 to 2 Hz) and high-delta (2
Hz to 4 Hz). Depending on the application, the analysis of
delta waves may require a careful filter design. One such
application is the analysis of transient events during non-
REM sleep denominated A-phases, which play an important
role in the sleep process [1]. Depending on their frequency
content, A-phases can be classified as types A1, A2 or
A3, where A1 phases predominantly contain low-frequency
waves.

Since the 1970s, and particularly in recent years, the
study of synchronization in EEG signals has attracted more
attention and interest from researchers. EEG synchronization
can be observed in roughly two spatial scales: first, in a
local scale, where the degree of synchronization of neural
ensembles underlying a single EEG sensor is related to the
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amplitude of the oscillations observed at that particular EEG
channel [2], [3], and second, in a long-range scale, where
distant populations of neurons interact and communicate by
means of reciprocal long-distance links, producing dynamic
changes in the correlation and/or synchronization of the
corresponding EEG channels [4]. Both the local and the long-
range synchronization are very dynamic, and contain events
that may last from a few milliseconds up to several seconds.
These changes can often be observed in specific frequency
bands. Therefore, in order to study EEG synchronization,
a time-frequency decomposition of the raw EEG signals is
often required. One way to achieve this consists in passing
the signals through a bank of passband filters tuned at the
frequencies of interest. The effect of local synchronization
can then be measured in terms of the amplitude or energy
of the filtered signals, whereas long-range synchronization
is often measured using coherence or phase-synchronization
measures. Instantaneous amplitude and phase are well de-
fined if the output of each filter is an analytic signal; that
is, a complex signal whose imaginary part is the Hilbert
transform of the real part. A filter that takes a real signal
as input and outputs an analytic signal is called a quadrature
filter [5], and has the property that the frequency response to
negative frequencies is zero; for this reason, quadrature filters
are typically implemented as FIR filters. Among the most
popular choices are Gabor filters, whose frequency response
is a Gaussian function centered at the tuning frequency [6].
On the other hand, the notion of the phase of a signal only has
a physical meaning for periodic signals, such as a sinusoidal,
which may be obtained as the output of a very narrow band-
pass filter. However, due to the Gabor-Heisenberg uncertainty
principle, it is not possible to have an arbitrarily narrow filter,
without sacrificing temporal resolution (and computational
resources).
Gabor filters are optimal in terms of the uncertainty principle
as they provide the best trade-off between temporal reso-
lution and frequency resolution; however, when the tuning
frequency is sufficiently low, they may have a significant
response to negative frequencies, which causes them to lose
their quadrature property. This, in consequence, produces
distortions in the recovered amplitude and phase, which may
range from mild to severe. A similar issue may arise with
typical ideal FIR filters. In contrast, sinusoidal quadrature
filters (SQF) have a frequency defined filter which have
asymmetrical frequency response which ensures only pos-
itive frequencies will be present in the output [7]. In this
study, three quadrature FIR filters are subject to various tests

 

Lineal 89.43 74.02 
Cuadrático 88.68 72.70 

 

 
Fig. 2. Ejemplo típico de clasificación lineal entre apnea y no apnea en 

dos dimensiones. A) Rasgos extraídos de la señal de flujo respiratorio y B) 
Rasgos extraídos de la señal del colchón.  

 
IV.  DISCUSIÓN Y CONCLUSIÓN 

 
 En el presente trabajo se evaluó el nivel de detección de 
que tienen los rasgos obtenidos del flujo respiratorio y de un 
colchón sensorizado. Los rasgos fueron obtenidos a partir 
del análisis de textura de las transformadas wavelet de las 
señales y éstos fueron utilizados en clasificadores lineales y 
cuadráticos. Nuestras principales observaciones son: a) el 
análisis de textura parece ser una herramienta útil para 
obtener rasgos para la detección de la apnea y b) la señal del 
colchón contiene información relevante para la detección de 
la apnea en forma indirecta. 
 El análisis de textura presenta características de fácil 
implementación y bajo costo computacional. Además, los 
rasgos obtenidos del análisis de textura contienen mucha 
información relevante para la detección de la apnea. Tal que 
con un número muy reducido de rasgos ( < 7) es posible 
hacer una buena clasificación. Esto conlleva a mitigar el 
problema de  la “maldición de la dimencionalidad” y a poder 
utilizar clasificadores simples como los propuestos en este 
trabajo sin sacrificar el nivel de separación.  
 El nivel de clasificación utilizando la señal del colchón 
parece ser muy bajo, esto se debe dos factores principales. 
Por una parte, las hipopneas presentan una reducción en el 

flujo respiratorio que al parecer no es fácil detectar con los 
sensores de presión del colchón. Por otra parte, las apneas 
de tipo obstructivo eliminan el flujo respiratorio pero los 
movimientos mecánicos de la respiración se incrementan 
debido al esfuerzo realizado por los sujetos para reanudar la 
respiración y poder obtener el oxígeno necesario para la 
sobrevivencia. Sin embargo, el colchón ofrece una 
alternativa, económica, no invasiva, no obstructiva, de fácil 
manejo y sin necesidad de un experto que coloque 
electrodos u otros sensores al paciente una buena alternativa 
para realizar evaluaciones del SAHS en ambientes no 
hospitalarios.  
 Las principales limitaciones de este estudio son el 
reducido número de sujetos y la falta de un análisis para la 
selección de parámetros que podrían optimizar el 
desempeño del algoritmo como el tamaño de ventana 
óptimo para incrementar la resolución temporal del análisis, 
además dela implementación de algoritmos de clasificación. 
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in order to evaluate the accuracy of the recovered amplitude
envelope and the recovered phase. The filters under study are:
a windowed ideal filter, the Gabor filter, and a filter with a
sinusoidal frequency response.
To our knowledge, the work presented in [8] do a theoretical
study of quadrature filters but used in 2D signals. This study
has a practical perspective and is applied for time series or
1D signals. In [5] Picinbono presents the basis for general
quadrature filter selection. Instead of a general aproach, our
work is more specific because is directed to physiological
signals.

II. MATERIALS AND METHODS
A. Synthetic input signal

For the experiments performed, the input signal contains
the sum of three cosine waves at frequencies of 1Hz, 4Hz
and 8Hz sampled at 256Hz with normally-distributed white
noise with zero mean and unit variance.

B. Filters

Since we are particularly interested in the extraction of
low-frequency signals, our tests focus on filters with center
frequency or tuning frecuencies at 1Hz. In these experiments,
the full bandwidth of all filters was set in the range from
0.1Hz to 4Hz with increments of 0.1Hz.

1) Ideal filter: The ideal band-pass filter was constructed
using the standard windowing method. An ideal low-pass fil-
ter with cutoff parameter ωc was shifted to center frequency
ωe > 0 using the shift properties of the Fourier transform.

Filter quadrature is guaranteed only when ωe −ωc > 0.
Finally a Blackman window w(n) is used to reduce ripples
in the frequency response of the filter. The impulse response
of the filter is given by:

hωc,ωe(n) =
sin(ωcn)

πn
e jωenw(n). (1)

2) Gabor filter: The impulse response of a Gabor filter
is defined as the product of a complex exponential with a
Gaussian window, specifically:

gσω ,ωe
(n) =

σω√
2π

e−
σ2

ω n2
2 e jωen. (2)

Gabor filter parameter σω stand for filter bandwidth and
ωe the tuning frequency.

3) Sinusoidal quadrature filter: These filters are defined
in the frequency domain in order to obtain an asymmetrical
frequency response which is controlled by the tuning fre-
quency ωk, the bandwidh h and the asymmetric bandwidth
component hk = min(h,ωk). The frequency response is given
by:

Sh,ωe(w) =




1
2

[
1+ cos(ω−ωk

hk
π)

]
if ω ∈ [ωk −hk,ωk]

1
2

[
1+ cos(ω−ωk

h π)
]

if ω ∈ [ωk,ωk +h]
0 otherwise.

(3)
The impulse response of this filter is obtained by inverse

Fourier transform.

Fig. 1. Frequency response of ideal, Gabor and sinusoidal quadrature filters.
All three filter were adjusted with tuning frequency 1Hz and normalized
bandwidth of 1Hz.

C. Bandwidth calibration

Because the bandwidth parameter on each filter yields
to different effective bandwidth, a bandwidth scaling factor
was computed for the Gabor and Ideal filters in order to
match their cutoff frequencies to those of the SQF. The
cutoff frequencies are defined as those where the power
decreases by 3dB. The reduction factor between the Gabor
filter bandwidth and sinusoidal filter bandwidth is 2.3529.
The scaling factor for ideal filter is 2. The normalized
frecuency response magnitude of all filters is shown in Fig. 1.

D. Filter implementation

For each filter tested, the output was calculated by convo-
lution y f (n) = h f (n)∗ x(n) where y f (n) is the output signal
obtained by applying the impulse response of filter h f (n).
Since the filter kernels are complex, a real valued input
produces a complex valued output, from which the amplitude
envelope and the phase of the output can be measured.

E. Measuring phase distortion

Since the synthetic input signal consist of the sum of three
cosine waves, whose frequencies are relatively apart, it is
expected that the output of a narrow band-pass filter tuned
at one of the input frequencies is a complex exponential,
and thus has a linear phase. Distortion takes place when the
phase response is not linear in the passband. A measure of the
non-linearity of the phase can be obtained using the standard
error of the estimate Sest =

√
∑n

i=1 e2
i /(n−2), where e2

i is the
square of the discrepancy between the output phase and the
linear model defined by least-square fit.

Another deviation of the filter phase was measured re-
spectly to the true phase. The true phase or expected phase
has linear behavior defined by θ = 2πF0/Fsn where F0 is
tuning frequency, Fs is the sampling frequency and n is the
sample number.

The discrepancy between the true phase and the out-
put phase was measured using var(d) = 1

n−1 ∑n
i=1 (di − d̄)2,
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Fig. 2. Discretization of the EEG synchronization in three levels, deter-
mined by the quartiles of the baseline distribution, for an A1-phase at sleep
stage 3.

Fig. 3. Non-linearity of the output phase for a noisy input signal.

where d is the diference between the calculated output phase
and the true phase θ and n is the number of samples
examinated.

F. Measuring amplitude envelope variation

Acording to Euler’s formula, a pure cosine function can
be expresed as cos(n) = 1

2 [e
jωn + e− jωn]. Exponential term

e− jωn is named the negative frequency component and e jωn

the positive frequency component. Since quadrature filters
supress all negative components the magnitude of the output
signal is expected to be 0.5. Thus, the error in the amplitude
estimation was calculated as MSE = 1

n ∑n
i=1 (|y f (i)|−0.5)2,

Where n is the number of samples of the output (4000 in
this study).

G. Synchronization entropy estimation

Entropy is a measure that quantifies the uncertainty of
a random variable. In this work, we use Shannon entropy
applied to a random variable generated from Electroen-
cephalography (EEG) data.

Polysomnographic data was downloaded from the public
Physionet CAP sleep database [9]. The database contains

all night sleep records from 16 healthy patients with-
out any known sleep disease. Records were previously
scored by expert neurologists and contains annotations for
sleep macrostructure according to Rechtschaffen & Kales
rules [10] and CAP annotations as defined by Terzano [1].

Mean Phase Diferrence (MPD) is a way to measure in-
phase synchrony. Synchrony between two signals is used to
reveal dynamic connectivity patterns. For this analisys, F4C4
and C4A1 EEG channels were selected, but only eight patient
records contain both channels, thus our study was limited to
those subjects. The phase of the EEG data was obtained by
filtering the raw data with quadrature filters tuned to the
delta band (0.7-4 Hz). The phase of the resulting analytic
signals was used to estimate the normalized measure MPD
µ(t) = 1− |wrap(φ1(t)− φ2(t))|/π , where wrap(φ) returns
the angle φ wrapped to the interval [−π,π) and φi represents
the phase of channel i.

During most A-phases, the EEG shows a less entropic
synchronization pattern; thus our interest lies in evaluating
changes in the entropy of EEG synchrony with respect to
the baseline segment. The baseline segment is a 2s window
prior to the onset of a given A-phase. This baseline is
compared with the synchronization observed in a 2s segment
right after the onset of a A-phase. Dynamic connectivity
was characterized by the entropy of a discretized version
of the MPD, which was obtained by classifying every MPD
value with respect to the distribution of the MPD during
the baseline segment (2s prior to the A-phase onset). MPD
values in the first quartile were classified as 0, while values in
the last quartile were classified as 1. Any other values were
classified as 0.5. Finally, all entropy values are normalized
with respect to the entropy of the corresponding baseline
segment, which can be shown to be 1.039721. Therefore,
the normalized entropy is expected to be less than 1 if the
connectivity during the A-phase shows a more organized and
stable behavior with respect to the basal state. An example of
A1 phase during sleep stage 3 with the corresponding MPD
and the discrete version of the MPD can be seen in Fig. 2.

III. RESULTS AND DISCUSSION

A. Quantitative results with a synthetic signal

The RMS deviation of the phase with respect to a straigth
line fitted by least-squares regression is shown Fig. 3. When
filter bandwidth increases above 1.0Hz, Gabor and ideal
filters lose the quadrature property and produce distortions in
the output. SQF behaves fairly well until bandwidth exceeds
3Hz. A similar behavior can be observed in Fig. 4 when
comparing the recovered phase with the true phase.

The mean square error was used to measure the deviation
of the output amplitude envelope from the expected value
0.5|e jωn|. The Fig. 5 shows how the error increases with
respect to the bandwidth of the bandpass, especially when
negative frequency components are allowed to pass.

B. Entropy of EEG synchronization

The distribution of the normalized entropy for the 2s
window into the A1 phases during deep sleep, using the three

in order to evaluate the accuracy of the recovered amplitude
envelope and the recovered phase. The filters under study are:
a windowed ideal filter, the Gabor filter, and a filter with a
sinusoidal frequency response.
To our knowledge, the work presented in [8] do a theoretical
study of quadrature filters but used in 2D signals. This study
has a practical perspective and is applied for time series or
1D signals. In [5] Picinbono presents the basis for general
quadrature filter selection. Instead of a general aproach, our
work is more specific because is directed to physiological
signals.

II. MATERIALS AND METHODS
A. Synthetic input signal

For the experiments performed, the input signal contains
the sum of three cosine waves at frequencies of 1Hz, 4Hz
and 8Hz sampled at 256Hz with normally-distributed white
noise with zero mean and unit variance.

B. Filters

Since we are particularly interested in the extraction of
low-frequency signals, our tests focus on filters with center
frequency or tuning frecuencies at 1Hz. In these experiments,
the full bandwidth of all filters was set in the range from
0.1Hz to 4Hz with increments of 0.1Hz.

1) Ideal filter: The ideal band-pass filter was constructed
using the standard windowing method. An ideal low-pass fil-
ter with cutoff parameter ωc was shifted to center frequency
ωe > 0 using the shift properties of the Fourier transform.

Filter quadrature is guaranteed only when ωe −ωc > 0.
Finally a Blackman window w(n) is used to reduce ripples
in the frequency response of the filter. The impulse response
of the filter is given by:

hωc,ωe(n) =
sin(ωcn)

πn
e jωenw(n). (1)

2) Gabor filter: The impulse response of a Gabor filter
is defined as the product of a complex exponential with a
Gaussian window, specifically:

gσω ,ωe
(n) =

σω√
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Gabor filter parameter σω stand for filter bandwidth and
ωe the tuning frequency.
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frequency response which is controlled by the tuning fre-
quency ωk, the bandwidh h and the asymmetric bandwidth
component hk = min(h,ωk). The frequency response is given
by:
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1+ cos(ω−ωk

hk
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1+ cos(ω−ωk
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(3)
The impulse response of this filter is obtained by inverse

Fourier transform.

Fig. 1. Frequency response of ideal, Gabor and sinusoidal quadrature filters.
All three filter were adjusted with tuning frequency 1Hz and normalized
bandwidth of 1Hz.

C. Bandwidth calibration

Because the bandwidth parameter on each filter yields
to different effective bandwidth, a bandwidth scaling factor
was computed for the Gabor and Ideal filters in order to
match their cutoff frequencies to those of the SQF. The
cutoff frequencies are defined as those where the power
decreases by 3dB. The reduction factor between the Gabor
filter bandwidth and sinusoidal filter bandwidth is 2.3529.
The scaling factor for ideal filter is 2. The normalized
frecuency response magnitude of all filters is shown in Fig. 1.

D. Filter implementation

For each filter tested, the output was calculated by convo-
lution y f (n) = h f (n)∗ x(n) where y f (n) is the output signal
obtained by applying the impulse response of filter h f (n).
Since the filter kernels are complex, a real valued input
produces a complex valued output, from which the amplitude
envelope and the phase of the output can be measured.

E. Measuring phase distortion

Since the synthetic input signal consist of the sum of three
cosine waves, whose frequencies are relatively apart, it is
expected that the output of a narrow band-pass filter tuned
at one of the input frequencies is a complex exponential,
and thus has a linear phase. Distortion takes place when the
phase response is not linear in the passband. A measure of the
non-linearity of the phase can be obtained using the standard
error of the estimate Sest =

√
∑n

i=1 e2
i /(n−2), where e2

i is the
square of the discrepancy between the output phase and the
linear model defined by least-square fit.

Another deviation of the filter phase was measured re-
spectly to the true phase. The true phase or expected phase
has linear behavior defined by θ = 2πF0/Fsn where F0 is
tuning frequency, Fs is the sampling frequency and n is the
sample number.

The discrepancy between the true phase and the out-
put phase was measured using var(d) = 1

n−1 ∑n
i=1 (di − d̄)2,
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Fig. 4. Phase estimation error for a noisy input signal.

Fig. 5. Amplitude estimation error for a noisy input signal.

filters under study for EEG synchrony estimation is shown
in Fig. 6.

The cutoff frequencies for all filters were set to 0.5Hz and
4Hz (delta band). The sinusoidal and ideal filters maintain
a null response to negative frequencies, but the Gabor filter
does not. As result the normalized entropies estimated using
the Gabor filter are more concentrated around 1, making it
more difficult to evaluate changes in the EEG connectivity
patterns. A similar behavior is observed for all A-phase sub-
types (A1, A2, and A3) by looking at the average normalized
entropies, as shown in Table I.

TABLE I
MEAN OF ENTROPY IN SLEEP STAGE 3 & 4

Subtype Events Sinusoidal Ideal Gabor

A1 1316 0.7959 0.8099 0.8474
A2 190 0.7922 0.8022 0.8466
A3 43 0.8172 0.8290 0.8734

IV. CONCLUSION

This study shows that, from a practical point of view,
bandpass filters must be carefully designed when analyzing

Fig. 6. Distributions of the normalized entropy for the A1 phases under
sleep (sleep stages 3 and 4), estimated using three different quadrature filters.

low-frequency signals. For example, bandwidth parameter
must be carefully selected to avoid phase or amplitude
distortion. On the other hand, our results show that the
sinusoidal quadrature filters maintain the phase stability in
presence of noise.

Our interest in activities related to events during the sleep
period, led us to determine how significant are the changes in
a selected measure. As a measure, we use Shannon entropy
to determine the changes of synchrony with respect to the
bassline activity. Our results show that a wrong choice of
filter (e.g., the Gabor filter in this case) may produce phase
artifacts that affect the result of a synchronization analysis
at low frequencies.
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